Pitfalls in qPCR

Primer and probe design and synthesis
Fluorophore – quencher combinations

Clémence Beslin
Eurogentec S.A.
Steps in qPCR assay

• Set up experiment
 – statistical relevant # samples/experimental group
 – controls
• Design and synthesis primers and probes
• RNA extraction
 – quality of RNA
• Reverse Transcription reaction
 – one step or two step reaction
• qPCR reaction
 – singleplex or multiplex
• Data analysis
PCR efficiency

- High PCR efficiency
 - high accuracy
 - high reproducibility

- PCR efficiency influenced by
 - length of amplicon
 - GC content of amplicon
 - secondary structures in primers, probes, amplicons
 - concentration reaction components
 - PCR inhibitors/PCR enhancers
 - quality RNA/cDNA
PCR efficiency

- Easiest way to determine PCR efficiency: standard curve with R^2 close to 1.00 and slope close to -3.32

Exponential amplification = $10^{(-1/slope)}$

Efficiency = $10^{(-1/slope)} - 1$
PCR efficiency

- 100% PCR efficiency
 - every PCR cycle amount of DNA is doubled
 - 2x dilution curve ΔCt of 1 between every dilution
 - 10x dilution curve ΔCt of 3.2 between every dilution

- Variation coefficient (R^2)
 - indication how well data points lie on one straight line
 - low R^2 indication for pipetting mistakes, inaccurate way of working, diluting out inhibitory factors
Why do you need a good design?

• Well-designed primers and probes are a prerequisite for successful RT qPCR in terms of
 – high PCR efficiencies
 – specific PCR products
 – no co-amplification of genomic DNA
 – no amplification of pseudogenes
 – most sensitive results
Design makes the difference!

- Comparison between two different primer-probe sets for 18S rRNA using same reaction components and experimental conditions
Design guidelines for primers

• Primers
 – length
 • 18-30 bases
 – GC content
 • 30-80% (ideally 40-60%)
 – Tm
 • 63-67°C (ideally 64°C), so that Tannealing is 58-62°C (ideally 59°C)
 • ΔTm forward primer and reverse primer < 4°C
 – avoid mismatches between primers and target, especially towards the 3’ end of the primer
 – avoid runs of identical nucleotides, especially of 3 or more Gs or Cs at the 3’ end
 – avoid 3’ end T (allows mismatching)
 – avoid complementarity within the primers to avoid hairpins (check using a software)
 – avoid complementarity between the primers, especially at 2 or more bases at the 3’ ends of the primers to avoid primer-dimers (check using a software)
 – design intron spanning or flanking primers to avoid co-amplification of genomic DNA (only possible in multiple exon genes, in single exon genes perform DNase I treatment of samples with RNase free DNase (Vandesompele, 2002))

Positions of exons and introns can be found in NCBI LocusLink databases (www.ncbi.nlm.nih.gov/LocusLink/)
Intron spanning/flanking primers

- Intron spanning primers

![Diagram showing the use of intron spanning/flanking primers](image)

- gDNA
 - Exon 1 → Exon 2 → Exon 3
 - Forward
 - No amplification

- cDNA
 - Exon 1 → Exon 2 → Exon 3
 - Forward → Reverse
 - Amplification
Intron spanning/flanking primers

- Intron flanking primers

- Diagram showing:
 - Forward and reverse primers for Exon 1, Exon 2, and Exon 3
 - gDNA leading to Large amplicon*
 - cDNA leading to Small amplicon*

* Can be detected via melt curve
Design guidelines for probes

- **5’ Exonuclease probes**
 - **length**
 - 18-30 bases (>30 bases required, use internal quencher on dT around 20th base)
 - Optimal: 20
 - Lengths over 30 bases are possible, but it is recommended to position the quencher not at the 3’ end, but internally 18-25 bases from the 5’ end
 - **GC content**
 - 30-80%
 - **Tm**
 - Tm of the probe must be 8-10°C higher than the Tm of the primers (8°C for genotyping, 10°C for expression profiling)
 - select the strand that gives the probe more Cs than Gs
 - place probe as close as possible to primers without overlapping them
 - avoid mismatched between probe and target
 - avoid runs of identical nucleotides, especially of 4 or more Gs
 - avoid 5’ end G (quenches the fluorophore)
 - avoid complementarity of the probe with either of the primers (check using a software)
 - for multiplex assays: for genotyping
 - position the polymorphism in the center of the probe
 - adjust the probe length so that both probes have the same Tm
Design guidelines for amplicons

- **Amplicon**
 - length for SYBR® green I assays:
 - 80-150 bp
 - shorter amplicons will give higher PCR efficiencies
 - longer amplicons will give a higher \(\Delta R_{n} \) as more SYBR® green I is incorporated
 - length for 5’ exonuclease probe assays:
 - 80-120 bp
 - shorter amplicons will give higher PCR efficiencies
 - shorter amplicons will give more efficient 5’ nuclease reactions
 - GC content
 - 30-80% (ideally 40-60%)
 - avoid secondary structures in the amplicon (check with Mfold: www.bioinfo.rpi.edu/applications/mfold/)
 - check if generate amplicon is unique by submitting primers (and probe) to a BLAST search (www.ncbi.nlm.nih.gov/BLAST/)
Frequent pitfalls

- I do already have existing primers of a normal PCR, but cannot find a good probe to fit them. What should I do?
 - Although it is disappointing to hear, it is best to do the design from scratch. The criteria for primers are less stringent as for probes.

- I have used a design software to design my primers and probes, but it do not get them to work properly
 - A design software is not a 100% guarantee to get a good primer/probe set, but is a good tool to make your life easier
 - Especially with SYBR® green I assays; try several primer sets as \textit{in silico} differs from experimental
Frequent pitfalls

- The design software that I use can not find a suggestion, although the sequence I have inserted is more than 500 bases long
 - It is not always possible to design a primer/probe set for a specific sequence due to GC/AT rich sequences, repeats or secondary structures
 - In most cases you can already see the most homogenous part of your sequence by eye. This is the best part to design your primers and probe on
 - Sometimes you can force the software to design a primer-probe set by changing the parameters like amplicon length, primer length, Tm’s or GC content
Frequent pitfalls

• I took the first suggestion in the list of Primer Express®, but the primer/probe set does not lead to good results
 – The first suggestion in the list of Primer Express® is the shortest amplicon, not the best primer/probe set

• With the recommended temperature profile I obtain an amplicon, but the detection does not function due to the probe, which is not binding
 – Each software uses its own method of calculating the Tm and there can be a difference between the calculated and experimental temperature
 – If the probe does not bind to the amplicon then the annealing temperature is too high in comparison to the Tm of the probe
 – Check Tm using several softwares.
 If Tm’s differ > 3°C check Tm experimentally
Predicted vs. experimental Tm

Source: ABI User Bulletin 6 ABI PRISM® Sequence Detection System
Probe too long or Tm too low?

- AT rich sequence: long probes required to reach correct Tm
- SNP detection: short probes required to increase specificity
- With LNA bases length probes can be decreased or Tm can be increased

Conformation change from B helix to A helix due to LNAs
Example probe assay

- “Jump” in dilution series caused by secondary structure in primer
Example SYBR® green I assay

- Ct’s of all dilutions around same point due to primer dimers
Choice of fluorophore and quencher is part of a good design

• Well-chosen fluorophores and quenchers are a prerequisite for successful RT qPCR in terms of
 – maximal fluorescence
 – minimal back ground
 – maximal signal-to-noise ration
 – maximal sensitivity
Design guidelines for fluorophores and quenchers

- **Fluorophores**
 - choose fluorophore that fits your real-time thermocycler
 - choose fluorophore with high level of fluorescence (weak fluorescence: JOE, TAMRA)
 - choose fluorophore with narrow spectrum and one emission maximum
 - avoid fluorophores that require manual coupling (i.e. ROX)
 - multiplex qPCR:
 - choose fluorophores that are spectrally well separated

- **Quenchers**
 - choose quencher that fits fluorophore (emission spectrum of fluorophore must have substantial overlap with absorption spectrum quencher)
 - take the fluorophore quencher combination with highest signal-to-noise ratio to obtain maximal sensitivity
 - preferably take dark quenchers like BHQ1, 2 or 3 (are also very robust in synthesis)
 - only in case of singleplex go for FAM-TAMRA as this is the most cost-effective combination
 - multiplex qPCR
 - avoid the use of TAMRA. If you must use TAMRA, use it on all probes (click on TAMRA as quencher in plate set up software)
 - preferably use dark quenchers to avoid lost of sensitivity (click on None as quencher plate set up software)
Fluorophore has to fit real-time thermocycler

<table>
<thead>
<tr>
<th>Thermocycler</th>
<th>Dye1</th>
<th>Dye2</th>
<th>Dye3</th>
<th>Dye4</th>
<th>Dye5</th>
<th>Dye6</th>
<th>Dye7</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneAmp® 5700</td>
<td>FAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI Prism® 7000</td>
<td>FAM</td>
<td>VIC/YY/JOE</td>
<td>NED/TAMRA/DFO</td>
<td>ROX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI Prism® 7700</td>
<td>FAM</td>
<td>VIC/YY/JOE/TET</td>
<td>NED/TAMRA/DFO</td>
<td>ROX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI Prism® 7900</td>
<td>FAM</td>
<td>VIC/YY/JOE/TET</td>
<td>NED/TAMRA/DFO</td>
<td>ROX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI Prism® 7300</td>
<td>FAM</td>
<td>VIC/YY/JOE</td>
<td>NED/TAMRA/DFO</td>
<td>ROX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI Prism® 7500</td>
<td>FAM</td>
<td>VIC/YY/JOE</td>
<td>NED/TAMRA/Cy3/DF</td>
<td>ROX/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-cycler IQ®</td>
<td>FAM</td>
<td>VIC/HEX/TET/Cy3/YY</td>
<td>Cy3/TAMRA</td>
<td>ROX/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mx3000P®</td>
<td>FAM</td>
<td>TET/YY</td>
<td>HEX/JOE/VIC/YY</td>
<td>TAMRA</td>
<td>Cy3</td>
<td>TR/ROX</td>
<td>Cy5/Alexa 350</td>
</tr>
<tr>
<td>Mx4000®</td>
<td>FAM</td>
<td>TET/YY</td>
<td>HEX/JOE/VIC/YY</td>
<td>TAMRA</td>
<td>Cy3</td>
<td>TR/ROX</td>
<td>Cy5</td>
</tr>
<tr>
<td>Rotorgene 2000</td>
<td>FAM</td>
<td>TET/JOE/VIC/YY</td>
<td>ROX/TAMRA/Cy3/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotorgene 3000</td>
<td>FAM</td>
<td>TET/JOE/VIC/YY</td>
<td>MAX/ROX/Cy3/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Engine Opticon® 1</td>
<td>FAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Engine Opticon® 2</td>
<td>FAM</td>
<td>TET/HEX/VIC/YY/TAMRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromo 4</td>
<td>FAM</td>
<td>TET/JOE/VIC/YY</td>
<td>ROX/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartcycler® 1</td>
<td>FAM</td>
<td>TET/JOE/VIC/YY</td>
<td>TAMRA/Cy3/Alexa</td>
<td>ROX/TR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smartcycler® 2</td>
<td>FAM</td>
<td>TET/Cy3/YY</td>
<td>ROX/TR</td>
<td>Cy5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightcycler®</td>
<td>FAM</td>
<td>LC Red 640/ROX</td>
<td>LC Red 705/Cy5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightcycler® 2.0</td>
<td>FAM</td>
<td>HEX/VIC/YY</td>
<td>LC Red 610</td>
<td>LC Red 640</td>
<td>LC Red 670</td>
<td>LC Red 705</td>
<td></td>
</tr>
<tr>
<td>Quantica®</td>
<td>FAM</td>
<td>TET/HEX/VIC/YY/TAMRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fluorophore has to fit real-time thermocycler

- Dragon Fly Orange: a new alternative to NED
 - Almost identical emission maxima to Ned
 - Robust Delta Rn and identical Ct values
 - Detect simultaneously up to 3 targets
Quencher has to fit fluorophore
Quencher has to fit fluorophore
High signal-to-noise ratio

BHQ1 leads to the highest signal-to-noise ratios and is superior to TAMRA and NFQ (EDQ)
TAMRA or dark quenchers?

![Graphs comparing fluorescent intensity vs. wavelength for FAM, TAMRA, and ROX](image)

- Top graph: FAM, TAMRA, ROX compared.
- Bottom graph: FAM, ROX compared.
Synthesis probes

- Probes are synthesized starting from 3’ end (quencher)
- Labelling process 5’ end
 - manual coupling via activated fluorophores and a C-6 spacer
 - very pure oligos, but low yield
 - 5’ and internal labelling (only on dT residu) possible
 - automatic coupling via labelled phosphoamidites
 - high purity in combination with high yield
 - only 5’end labelling possible
Useful software and websites

- **Design primers**
 - any primer design software (freeware on web)
 - Oligo® 6.0 (MedProbe for Europe)
 - Primer 3.0 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)

- **Design Taqman® probes**
 - Primer Express® (Applera)
 - BeaconDesigner® (Premier Biosoft Inc.)

- **Design Molecular Beacons**
 - BeaconDesigner® (Premier Biosoft Inc.)

- **Design Scorpion primers**
 - Scorpio (DNA software)

- **Verification of design**
 - Mfold (www.bioinfo.rpi.edu/applications/mfold/)
 - BLAST (www.ncbi.nlm.nih.gov/BLAST/)

- **A software is just a tool to help you, not a guarantee for the perfect design!**
Useful sources of information

- Available on www.eurogentec.com
- Frequently asked questions for RT qPCR and qPCR
- Troubleshooting guide for RT qPCR and qPCR
- Your one-stop-shop real-time PCR supplier (in your conference bag)