Genomic analysis of fetal nucleic acids in maternal blood
Dennis Lo YM, Kwun Chiu RW.
Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
Annu Rev Genomics Hum Genet. 2012 Sep 22;13: 285-306

The 15 years since the discovery of fetal DNA in maternal plasma have witnessed remarkable developments in noninvasive prenatal diagnosis. An understanding of biological parameters governing this phenomenon, such as the concentration and molecular size of circulating fetal DNA, has guided its diagnostic applications. Early efforts focused on the detection of paternally inherited sequences, which were absent in the maternal genome, in maternal plasma. Recent developments in precise measurement technologies such as digital polymerase chain reaction (PCR) have allowed the detection of minute allelic imbalances in plasma and have catalyzed analysis of single-gene disorders such as the hemoglobinopathies and hemophilia. The advent of massively parallel sequencing has enabled the robust detection of fetal trisomies in maternal plasma. Recent proof-of-concept studies have detected a chromosomal translocation and a microdeletion and have deduced a genome-wide genetic map of a fetus from maternal plasma. Understanding the ethical, legal, and social aspects in light of such rapid developments is thus a priority for future research.

Nucleic acids in circulation: are they harmful to the host?
Mittra I, Nair NK, Mishra PK.
Department of Translational Research, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410 210, India
J Biosci. 2012 Jun;37(2): 301-312

It has been estimated that 10(11) -10(12) cells, primarily of haematogenous origin, die in the adult human body daily, and a similar number is regenerated to maintain homeostasis. Despite the presence of an efficient scavenging system for dead cells, considerable amounts of fragmented genetic material enter the circulation in healthy individuals. Elevated blood levels of extracellular nucleic acids have been reported in various disease conditions; such as ageing and age-related degenerative disorders, cancer; acute and chronic inflammatory conditions, severe trauma and autoimmune disorders. In addition to genomic DNA and nucleosomes, mitochondrial DNA is also found in circulation, as are RNA and microRNA. There is extensive literature that suggests that extraneously added nucleic acids have biological actions. They can enter into cells in vitro and in vivo and induce genetic transformation and cellular and chromosomal damage; and experimentally added nucleic acids are capable of activating both innate and adaptive immune systems and inducing a sterile inflammatory response. The possibility as to whether circulating nucleic acids may, likewise, have biological activities has not been explored. In this review we raise the question as to whether circulating nucleic acids may have damaging effects on the host and be implicated in ageing and diverse acute and chronic human pathologies.

Non-invasive prenatal diagnosis of single-gene disorders from maternal blood
Bustamante-Aragonés A, Rodríguez de Alba M, Perlado S, Trujillo-Tiebas MJ, Arranz JP, Díaz-Recasens J, Troyano-Luque J, Ramos C.
Gene. 2012 Aug 1;504(1): 144-149

Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS).

Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection
Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, Bayer CM, Bani MR, Richter S, Adamietz BR, Wenkel E, Rauh C, Beckmann MW, Fasching PA.
Department of Obstetrics and Gynaecology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
PLoS One. 2012;7(1): e29770

INTRODUCTION: MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls.
METHODS: We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718).
RESULTS: Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202.
CONCLUSIONS: MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use.

Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib
Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BG, Hicks RJ, Hampton GM, Amler LC, Pirzkall A, Lackner MR.
Department of Oncology Biomarker Development and Oncology Clinical Development, Genentech, Inc, South San Francisco, California 94080, USA.
Clin Cancer Res. 2012 Apr 15;18(8): 2391-2401

PURPOSE: Elevated levels or increases in circulating tumor cells (CTC) portend poor prognosis in patients with epithelial cancers. Less is known about CTCs as surrogate endpoints or their use for predictive biomarker evaluation. This study investigated the utility of CTC enumeration and characterization using the CellSearch platform, as well as mutation detection in circulating tumor DNA (ctDNA), in patients with advanced non-small cell lung cancer (NSCLC).
EXPERIMENTAL DESIGN: Forty-one patients were enrolled in a single-arm phase II clinical trial of erlotinib and pertuzumab. Peripheral blood was analyzed for CTC enumeration, EGFR expression in CTCs, and detection of oncogenic mutations in CTCs and ctDNA. Changes in CTC levels were correlated with 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomographic (FDG-PET) and computed tomographic (CT) imaging and survival endpoints.
RESULTS: CTCs were detected (≥ 1 CTC) at baseline in 78% of patients. Greater sensitivity for mutation detection was observed in ctDNA than in CTCs and detected mutations were strongly concordant with mutation status in matched tumor. Higher baseline CTC counts were associated with response to treatment by Response Evaluation Criteria in Solid Tumors (RECIST, P = 0.009) and decreased CTC counts upon treatment were associated with FDG-PET and RECIST response (P = 0.014 and P = 0.019) and longer progression-free survival (P = 0.050).
CONCLUSION: These data provide evidence of a correlation between decreases in CTC counts and radiographic response by either FDG-PET or RECIST in patients with advanced NSCLC. These findings require prospective validation but suggest a potential role for using CTC decreases as an early indication of response to therapy and ctDNA for real-time assessment of mutation status from blood.

De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer
Wu X, Somlo G, Yu Y, Palomares MR, Li AX, Zhou W, Chow A, Yen Y, Rossi JJ, Gao H, Wang J, Yuan YC, Frankel P, Li S, Ashing-Giwa KT, Sun G, Wang Y, Smith R, Robinson K, Ren X, Wang SE.
Department of Cancer Biology, City of Hope Beckman Research Institute, 1500 Duarte Road, Duarte, CA 91010, USA.
J Transl Med. 2012 10:42.

BACKGROUND: MicroRNAs (miRNAs) have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC), and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome.
METHODS: The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT) followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers.
RESULTS: More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients.
CONCLUSIONS: Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis
Duttagupta R, DiRienzo S, Jiang R, Bowers J, Gollub J, Kao J, Kearney K, Rudolph D, Dawany NB, Showe MK, Stamato T, Getts RC, Jones KW.
Applied Reasearch Group, Affymetrix Inc, Santa Clara, California, United States of America.
PLoS One. 2012;7(2): e31241

Inflammatory Bowel Disease--comprised of Crohn's Disease and Ulcerative Colitis (UC)--is a complex, multi-factorial inflammatory disorder of the gastrointestinal tract. In this study we have explored the utility of naturally occurring circulating miRNAs as potential blood-based biomarkers for non-invasive prediction of UC incidences. Whole genome maps of circulating miRNAs in micro-vesicles, Peripheral Blood Mononuclear Cells and platelets have been constructed from a cohort of 20 UC patients and 20 normal individuals. Through Significance Analysis of Microarrays, a signature of 31 differentially expressed platelet-derived miRNAs has been identified and biomarker performance estimated through a non-probabilistic binary linear classification using Support Vector Machines. Through this approach, classifier measurements reveal a predictive score of 92.8% accuracy, 96.2% specificity and 89.5% sensitivity in distinguishing UC patients from normal individuals. Additionally, the platelet-derived biomarker signature can be validated at 88% accuracy through qPCR assays, and a majority of the miRNAs in this panel can be demonstrated to sub-stratify into 4 highly correlated intensity based clusters. Analysis of predicted targets of these biomarkers reveal an enrichment of pathways associated with cytoskeleton assembly, transport, membrane permeability and regulation of transcription factors engaged in a variety of regulatory cascades that are consistent with a cell-mediated immune response model of intestinal inflammation. Interestingly, comparison of the miRNA biomarker panel and genetic loci implicated in IBD through genome-wide association studies identifies a physical linkage between hsa-miR-941 and a UC susceptibility loci located on Chr 20. Taken together, analysis of these expression maps outlines a promising catalog of novel platelet-derived miRNA biomarkers of clinical utility and provides insight into the potential biological function of these candidates in disease pathogenesis.

Circulating microRNAs in plasma of patients with gastric cancers
Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, Konishi H, Morimura R, Deguchi K, Fujiwara H, Okamoto K, Otsuji E.
Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
Br J Cancer. 2010 Mar 30;102(7): 1174-1179

BACKGROUND: We examined plasma microRNA (miRNA) concentrations from patients with gastric cancers (GCs) to assess their clinical application for diagnosing and monitoring diseases.
METHODS: We initially investigated the appropriateness of plasma miRNA assay, and then compared plasma miRNA results with the expressions in cancer tissues from eight GC patients, and also compared plasma miRNAs between pre- and post-operative paired samples from 10 GC patients. Then, plasma miRNAs (miR-17-5p, miR-21, miR-106a, miR-106b and let-7a) were analysed in 69 GC patients and 30 healthy volunteers in total.
RESULTS: The initial analysis showed that miRNAs were stable and detectable in all plasma samples, and the plasma miRNA levels reflected the tumour miRNAs in most cases. The levels of these miRNAs were significantly reduced in post-operative samples. In large-scale analysis, the plasma concentrations of miRNAs (miR-17-5p, miR-21, miR-106a, miR-106b) were significantly higher in GC patients than controls (P=0.05, 0.006, 0.008 and <0.001 respectively), whereas let-7a was lower in GC patients (P=0.002). The values of the area under the receiver-operating characteristic curve were 0.721 for the miR-106b assay and 0.879 for the miR-106a/let-7a ratio assay.
CONCLUSION: Detection of circulating miRNAs might provide new complementary tumour markers for GC.

Exosomes:  Fit to deliver small RNA
Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM.
Department of Pathology; Cancer Center Amsterdam; VU University Medical Center; Amsterdam, The Netherlands.
Commun Integr Biol. 2010 Sep;3(5): 447-450

Exosomes are specialized membranous nano-sized vesicles derived from endocytic compartments that are released by many cell types. Microvesicles are distinctive from exosomes in that they are produced by shedding of the plasmamembrane and usually larger in size (>1 µm). Exosome biogenesis involves the tightly controlled process of inward budding from the limiting membrane of multivesicular bodies (MVBs). This results in numerous intraluminal vesicles in the lumen of MVBs that contain distinct protein repertoires. It has been suggested that microvesicles shed by certain tumor cells hold functional messenger RNA (mRNA) that may promote tumor progression. We discovered that purified exosomes contain functional microRNAs (miRNAs) and small RNA, but detected little mRNA. Although a clear and decisive distinction between microvesicles and exosomes cannot be made and different subsets of exosomes exist, we speculate that exosomes are specialized in carrying small RNA including the class 22-25 nucleotide regulatory miRNAs. To demonstrate this we developed a co-culture system and found that exosomes are continuously secreted and transferred from Epstein Barr virus (EBV)-infected cells to uninfected neighboring cells. Throughout exosome transfer, the exogenous EBV-encoded miRNAs were delivered to subcellular sites of miRNA-mediated gene repression. Additionally, we found evidence that mature miRNAs are transferred between circulating cells in humans, since we detected EBV-miRNAs in non-infected cells in the peripheral blood of patients that include monocytes and T cells. In this addendum we discuss these findings in the context of recently published papers that advanced our current knowledge of exosome physiology, (mi)RNA function and intercellular RNA transfer. Based on this information we propose that an intercellular (miRNA-based) mode of signal transmission may be well suited in controlling space-confined processes such as the initiation of immune responses in the secondary (peripheral) lymphoid tissues or in a tumor microenvironment. Deciphering the molecular mechanism(s) that control small RNA loading into exosomes and transfer to recipient cells in vitro will provide new evidence for the physiological relevance of vesicle-mediated intercellular communication in vivo.

The majority of microRNAs detectable in serum and saliva is concentrated in exosomes
Gallo A, Tandon M, Alevizos I, Illei GG.
Sjögren's Syndrome Clinic, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS One. 2012;7(3):e30679

There is an increasing interest in using microRNAs (miRNA) as biomarkers in autoimmune diseases. They are easily accessible in many body fluids but it is controversial if they are circulating freely or are encapsulated in microvesicles, particularly exosomes. We investigated if the majority of miRNas in serum and saliva are free-circulating or concentrated in exosomes. Exosomes were isolated by ultracentrifugation from fresh and frozen human serum and saliva. The amount of selected miRNAs extracted from the exosomal pellet and the exosome-depleted serum and saliva was compared by quantitative RT-PCR. Some miRNAs tested are ubiquitously expressed, others were previously reported as biomarkers. We included miRNAs previously reported to be free circulating and some thought to be exosome specific. The purity of exosome fraction was confirmed by electronmicroscopy and western blot. The concentration of miRNAs was consistently higher in the exosome pellet compared to the exosome-depleted supernatant. We obtained the same results using an equal volume or equal amount of total RNA as input of the RT-qPCR. The concentration of miRNA in whole, unfractionated serum, was between the exosomal pellet and the exosome-depleted supernatant. Selected miRNAs, which were detectable in exosomes, were undetectable in whole serum and the exosome-depleted supernantant. Exosome isolation improves the sensitivity of miRNA amplification from human biologic fluids. Exosomal miRNA should be the starting point for early biomarker studies to reduce the probability of false negative results involving low abundance miRNAs that may be missed by using unfractionated serum or saliva.

Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes
Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE.
Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, USA.
Blood. 2012 Jan 19;119(3): 756-766

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.

Functional transfer of microRNA by exosomes
Stoorvogel W.
Utrecht University, the Netherlands
Blood. 2012 Jan 19;119(3): 646-648

Comment on --
Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes  [Blood. 2012]

Secretory microRNAs as a versatile communication tool
Iguchi H, Kosaka N, Ochiya T.
Section for Studies on Metastasis; National Cancer Center Research Institute; Chuo-ku, Tokyo Japan.
Commun Integr Biol. 2010 Sep;3(5): 478-481

The physiological role of microRNAs (miRNAs) is widely appreciated as a fine-tuner to post-transcriptionally regulate the expression of multiple genes in the cells of origin. Here, we highlight two significant characteristics of miRNAs: (1) they are secreted from the producing cells and (2) they can deliver the gene silencing signals between living cells in vitro and in vivo. The circulation of miRNAs in human body fluids can be provided with a logical explanation by our discovery that the release of miRNAs is actively controlled through a ceramide-dependent machinery associated with exosome secretion. This finding can contribute to the development of circulating miRNAs as diagnostic biomarkers for a variety of diseases. We also demonstrated that secretory miR-16 was transferred into prostate cancer PC-3M cells subcutaneously xenografted in nude mice, resulting in the suppression of its target gene. This result suggests that faithfully to their primary role, secretory miRNAs can function as a translational inhibitor in recipient cells as well. In conclusion, miRNAs are liberated from their incipient cells, whereby they can exert their full potentials as a silence master of gene expressions.

Presence and characterization of cell-free seminal RNA in healthy individuals: implications for noninvasive disease diagnosis and gene expression studies of the male reproductive system
Huang S, Li H, Ding X, Xiong C.
Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Clin Chem. 2009 Nov;55(11): 1967-1976

BACKGROUND: We recently detected cell-free seminal RNA (cfsRNA) and set out to study its concentration, integrity, stability in healthy individuals, and mechanisms for its protection from ribonucleases.
METHODS: We quantified cfsRNA by reverse-transcription quantitative real-time PCR (RT-qPCR) targeting of the 5' region of the ACTB (actin, beta) transcript. cfsRNA integrity was analyzed by microcapillary electrophoresis and by amplification of full-length ACTB and DDX4 [DEAD (Asp-Glu-Ala-Asp) box polypeptide 4] transcripts, including measurement of the relative amounts of different regions of ACTB and DDX4 transcripts. Stability of cfsRNA was measured by time-course analysis of different regions of ACTB and DDX4 transcripts. To investigate whether cfsRNA was protected in complexed forms, we processed seminal plasma in 2 ways: filtration through pores of different sizes and Triton X-100 treatment before RNA recovery.
RESULTS: cfsRNA concentrations varied from 0.87-3.64 mg/L [mean (SD), 1.75 mg/L (0.92 mg/L)]. Most cfsRNA was present in partially degraded forms, with smaller amounts of middle and 3' amplicons compared with 5' amplicons. Although the 3' region of the DDX4 transcript was degraded completely by 90 min, the 5' regions of ACTB and DDX4 transcripts were stable up to 24 h. Filtration through 0.22-mum pores reduced ACTB and DDX4 mRNA concentrations by 72% and 61%, respectively. Nearly all seminal ACTB and DDX4 mRNA disappeared after Triton X-100 treatment.
CONCLUSIONS: Although cfsRNA was partially degraded, it represented diverse transcript species and was abundant, fairly stable, and associated with particles in healthy individuals. cfsRNA may represent a potential noninvasive biomarker of the male reproductive system and of germline epigenetics.

Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling
Kang K, Peng X, Luo J, Gou D.
College of Life Science, Shenzhen University, Shenzhen, Guangdong, 518060, China
J Anim Sci Biotechnol. 2012 3(1): 4

ABSTRACT: MicroRNAs (miRNAs) are small noncoding RNAs (18-25 nucleotides) that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR)-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1) sample collection and preparation; (2) global miRNAs profiling using quantitative real-time PCR (qRT-PCR); (3) data normalization and analysis; and (4) selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

Sensitive PCR-based quantitation of cell-free circulating microRNAs
Hastings ML, Palma J, Duelli DM.
Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
Methods. 2012 Aug 3. [Epub ahead of print]

Cell-free microRNAs (miRNAs) that circulate in the blood are promising surrogate biomarkers of disease and physiological processes. The ease of quantifying specific miRNA species using made-to-order approaches based on Taq-polymerase has led to numerous studies that have identified changes in the abundance of circulating cell-free miRNA species that correlate with pathology or other events. The growing interest in developing miRNAs as blood biomarkers necessitates the careful consideration of the unique properties of such body fluids that can make the reproducible and quantitative assessment of RNA abundance challenging. For example, enzymes involved in the amplification and analysis of RNA can be affected by blood components that copurify with miRNA. Thus, if miRNAs are to be effectively utilized as biomarkers, it is important to establish standardized protocols for blood collection and miRNA analysis to ensure accurate quantitation. Here we outline several considerations, including the type of collection tube used in sampling, the influence of added anticoagulants and stabilizers, sample processing, enrichment of vesicular and other miRNA species, RNA extraction approaches and enzyme selection, that affect quantitation of miRNA isolated from plasma and should be considered in order to achieve reproducible, sensitive and accurate quantitation.

Changes in circulating microRNA levels associated with prostate cancer
Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, Kuslich C, Visakorpi T, Hamdy FC.
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
Br J Cancer. 2012 Feb 14;106(4): 768-774

BACKGROUND: The aim of this study was to investigate the hypothesis that changes in circulating microRNAs (miRs) represent potentially useful biomarkers for the diagnosis, staging and prediction of outcome in prostate cancer.
METHODS: Real-time polymerase chain reaction analysis of 742 miRs was performed using plasma-derived circulating microvesicles of 78 prostate cancer patients and 28 normal control individuals to identify differentially quantified miRs.
RESULTS: A total of 12 miRs were differentially quantified in prostate cancer patients compared with controls, including 9 in patients without metastases. In all, 11 miRs were present in significantly greater amounts in prostate cancer patients with metastases compared with those without metastases. The association of miR-141 and miR-375 with metastatic prostate cancer was confirmed using serum-derived exosomes and microvesicles in a separate cohort of patients with recurrent or non-recurrent disease following radical prostatectomy. An analysis of five selected miRs in urine samples found that miR-107 and miR-574-3p were quantified at significantly higher concentrations in the urine of men with prostate cancer compared with controls.
CONCLUSION: These observations suggest that changes in miR concentration in prostate cancer patients may be identified by analysing various body fluids. Moreover, circulating miRs may be used to diagnose and stage prostate cancer.