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I. INTRODUCTION 

Since the invention of real-time PCR (qPCR), thousands of 

high-impact studies have been conducted and published using 

qPCR technique (Heid et al. 1996; Higuchi et al. 1993; 

VanGuilder, Vrana, and Freeman 2008). Because it is highly 

sensitive, qPCR is the preferred method for microarray data 

validation (Canales et al. 2006); however the most exciting 

applications have been in the discovery of new biomarkers and 

in diagnostic prediction (Gillis et al. 2007). Despite the fact 

that this technique has been widely used by researchers, there 

are several obstacles to analyzing the vast amounts of data 

generated. 

 

Before data can be generated and analyzed, an hypothesis 

needs to be formed and the experiment designed. The success 

of a project depends on fundamental rules in the 

implementation of quality controls (review plates, filter 

outliers, removal of incorrect samples and flag genes 

undetected), selection of the optimal endogenous controls for 

normalization and the correct choice of the correct statistical 

method for the analysis. In this document we describe some of 

the crucial steps in qPCR data analysis and illustrate statistical 

notions with a concrete example using the RealTime StatMiner 

software.  

 

II. BIOLOGICAL SAMPLES 

As an example, consider the following experiment: to see 

the effect of a treatment on miRNA expression in mice, 

samples are extracted from two tissues (tissue Control-C and 

tissue Target-T). Additionally, three categories of mice are 

involved: untreated mice (NT), mice with a low dose of 

treatment (0.005gr - Low) and mice with a high dose (0.01gr - 

High). As a result, this project has two experimental factors 

(see Figure 1): 

1. Mouse tissue (C,T) 

2. Treatment dose (NT, Low, High) 

III. SETTING THE EXPERIMENTAL DESIGN: FACTORS, GROUPS 

& SAMPLES 

Prior to any experiment, an appropriate experimental design 

has to be established. Combining the two experimental factors 

in our previous example, there are six possible scenarios for a 

given sample (see Table 1): 

 

1. A sample of Control tissue with no treatment: C.NT 

2. A sample of Control tissue with low doses: C.Low 

3. A sample of Control tissue with high doses: C.High 

4. A sample of Target tissue with no treatment: T.NT 

5. A sample of Target tissue with low doses: T. Low 

6. A sample of Target tissue with high doses: T. High 
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Fig. 1.  Experimental factors of the project. 

  

 

Abstract: Data analysis represents one of the biggest bottlenecks in qPCR experiments and the statistical aspects of the 

analysis are sometimes considered confusing for the non-expert. In this document we present some of the usual methods 

used in qPCR data analysis and a practical example using Integromics’ RealTime StatMiner, the unique software analysis 

package specialized for qPCR experiments which is compatible with all Applied Biosystems Instruments. RealTime 

StatMiner (http://www.integromics.com/StatMiner) uses a simple, step-by-step analysis workflow guide that includes 

parametric, non-parametric and paired tests for relative quantification of gene expression, as well as 2-way ANOVA for 

two-factor differential expression analysis. 
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Because the goal is to assess the expression of miRNAs for 

all configurations, samples representing every scenario are 

needed. The question then is, are 6 samples enough or are 

more samples needed for this project? As statistical 

significance requires multiple measurements, biological 

replicates are necessary (multiple samples per configuration). 

The following points can help to estimate the number of 

required samples: 

 

• No statistical significance can be obtained for a 

differential expression measurement if only one sample is 

available for one of the conditions. 

• Three is the minimum number of samples per group that 

is required to detect outliers and to obtain statistical 

significance. 

• If the expected differential expression is high (e.g. a 

knock-down experiment) three biological replicates can suffice 

for the test. Conversely, when low differential expression is 

expected (e.g. gene regulation by miRNAs), more biological 

replicates may be needed. As it is not always possible to know 

“a priori” the difference in the expression sometimes it is 

better to start with 3 biological replicates and add more later 

when needed. 

• The variability of the expression values between 

measurements from the same condition is an important factor. 

The lower this variability is, the lower the number of required 

samples. 

• Overall, increasing the number of samples increases the 

power of the statistical test. 

In our example we use three samples per condition (or three 

biological replicates per group; see Box 1). The project 

contains 18 samples (six groups x three samples per group). 

The samples are named using the “experimental condition” as 

the prefix and the number of “biological replicates” as the 

suffix (see Table 1 and Figure 2). 

IV. FOLD CHANGE IN QPCR 

In every well, the qPCR experiment measures the 

expression intensity of a certain gene from a sample under 

specific biological conditions. This measurement is expressed 

in Cycles to Threshold (Ct) of PCR, a relative value that 

represents the cycle number at which the amount of amplified 

DNA reaches the threshold level. Because of the technical 

variability between experiments the Ct needs to be normalized 

(see Box 2). Differential expression is done gene by gene by 

comparing the normalized Ct values (∆Ct) of all the biological 

replicates between two groups of samples (two biological 

conditions).  

 

Figure 3 shows the differential expression of the miRNA 

mmu-miR-25 between the Control tissue without treatment 

(C.NT) and the Target tissue without treatment (T.NT). 

Because in every cycle of PCR (Ct value) the amount of DNA 

is approximately duplicated, the Ct is in the logarithmic scale 

TABLE I 

EXPERIMENTAL DESIGN 

SampleName Tissue Treatment Condition 

C_NT_1 C NT C.NT 

C_NT_2 C NT C.NT 

C_NT_3 C NT C.NT 

C_Low_1 C Low C.Low 

C_Low_2 C Low C.Low 

C_Low_3 C Low C.Low 

C_High_1 C High C.High 

C_High_2 C High C.High 

C_High_3 C High C.High 

T_NT_1 T NT T.NT 

T_NT_2 T NT T.NT 

T_NT_3 T NT T.NT 

T_Low_1 T Low T.Low 

T_Low_2 T Low T.Low 

T_Low_3 T Low T.Low 

T_High_1 T High T.High 

T_High_2 T High T.High 

T_High_3 T High T.High 
 

Experimental design of 18 samples using 2 experimental factors. The last 

column summarizes the biological conditions of the sample 

 

Fig. 2.  RealTime StatMiner experiment design section. To load the 

experiment design information (see Table 1) just click on Add Factor and fill 

every cell with the biological information. Then simply save the information 

on an external file and Apply the design. 

  

BOX 1- Biological replicates and technical 

replicates 

Technical replicates are measurements that are done 

using exactly the same sample to test the 

reproducibility of the qPCR technology (instruments, 

reagents or protocols). Once this is done and potential 

outliers are removed, technical replicates are usually 

aggregated to a single measurement. Biological 

replicates on the other hand are designed to be 

representative of a general biological condition, 

therefore they are extracted from different sources 

(reproducing the experimental conditions). Extracting 

three different samples of the tissue C from the same 

mouse only represents a single animal. In order to 

obtain biological replicates that characterize the Mus 

musculus specie, samples should be extracted from 

different mice. 
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and inversely proportional to the quantity of DNA/RNA. 

Therefore high ∆Cts represent low expression while highly 

expressed genes have low ∆Cts. Comparing the normalized 

expression (∆Ct) of the two conditions it is possible to 

calculate the fold change of the expression of the miRNA 

(−∆∆Ct). The fold change is the expression ratio: if the fold 

change is positive it means that the gene is upregulated; if the 

fold change is negative it means it is downregulated (Livak 

and Schmittgen 2001). There are two factors that can bias the 

fold change of the analysis: the efficiency of the PCR reaction 

and the absence of expression for a given gene. 

 

• The efficiency of the PCR reaction. Although the number 

of generated molecules is supposed to double at each cycle of 

an ideal PCR experiment, in practice, this ratio may be lower. 

When different targets are not amplified with the same 

reaction efficiency, the comparison of their expression levels 

requires some adjustment. Using the TaqMan technology, the 

efficiency is assumed to be close to 100% (Applied 

Biosystems 2006), but in other technologies such as SYBR 

Green the fold change should be adjusted. RealTime StatMiner 

integrates, in the workflow analysis the functionality of 

efficiency correction (see the RealTime StatMiner manual; 

http://www.integromics.com/StatMiner). 

• The absence of expression for a given gene. When the 

mRNA quantity of the gene does not exceed a detection 

threshold, the corresponding Ct value is undetermined or close 

to the upper limit of the possible range, raising the issue of 

reproducibility (Nolan, Hands, and Bustin 2006). In such cases 

the detector should be considered ”not detected”. The fold 

 

 
Fig. 4.  RealTime StatMiner Fold change results comparing C.NT versus T.NT. Upregulated detectors take positive values while repressed detectors are negative. 

Detectors in blue are expressed in both tissues, Detectors in yellow are not expressed in C.NT, detectors in red are not expressed in T.NT and those in black are 

not expressed in either of the two tissues. Regardless of the fold change sign detectors in yellow are upregulated and those in red downregulated (see Box 3 for an 

explanation of mmu-miR-23a fold change). 

  

Fig. 3.  Representation of the process from the measurement to the 

differential expression of tissue C (untreated), using as the control baseline 

the tissue T (untreated). (A) Cts for the Endogenous Control snoRNA135 

and the detector mmu-mina-25 are calculated using qPCR. (B) Then the Cts 

are normalized using the Endogenous Control gene. (C) Finally the 

differential expression of mmu-mina-25 is calculated and represented in 

Log 10 scale. 

  

BOX 2 – Imputation of Ct values 

Sometimes the Ct values are undetermined (not 

detected after certain Cycles) or absent (when no 

reaction takes place in the corresponding well), which 

raises a mathematical issue for the analysis of the 

project. To address this issue, RealTime StatMiner 

imputes Ct values. Undetermined values are set to a 

maximum Ct (e.g. 40). If the Ct value is totally absent, 

an imputation is performed by using the values of the 

other biological replicates. For example in this project, 

the Ct value of the detector mmu-miR-30c is 22.5 for 

C.NT.1, 20.4 for C.NT.2 ; there is no value for C.NT.3. 

After imputation (and the selection of the median as 

aggregation method between samples with the same 

experimental condition) the Ct is 21.4 for mmu-miR-

30c in C.NT.3 
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change value of a gene that is not expressed in some of the 

biological conditions may not be reliable and it may produce 

misleading results, as exemplified in Box 3. RealTime 

StatMiner can detect and discard unexpressed genes to avoid 

false results (see Figure 4).  

 

V. STATISTICAL SIGNIFICANCE 

Having a positive fold change suggests that a certain 

miRNA is upregulated but is this extensible to any other mice? 

In other words, is the differential expression of this miRNA 

statistically significant or was the result achieved by chance? 

The statistical test calculates the p-value of every detector 

compared in the analysis. According to the gold standard in 

statistics, a p-value lower than 0.05 is considered significant 

(Fisher 1925), although some authors set the cut-off at 0.01. 

Statistics are widely utilized in most of the works published; 

even so it is unclear to some qPCR users how to apply these 

methods.  

 

VI. PARAMETRIC OR NON-PARAMETRIC TEST 

A statistical test can be parametric or non-parametric. To 

know which of the two types of tests to choose one question 

needs to be answered: does the Ct value of every detector in 

the project follow a “normal” distribution? In other words, 

would the distribution of the Ct values for a single detector 

results in a histogram similar to the plot A in Figure 5 if the 

experiment was done with an large number of mice? The 

normal distribution (see Plot A in Figure 5) is symmetric and 

has a bell-shaped curve with a single peak. The parametric test 

runs under the assumption that the distribution of gene or 

miRNA Ct value is normal while non-parametric tests do not 

make such an assumption. 

 

Parametric: moderated t-test 

One of the most popular parametric tests is the “Student’s t-

test”. The Student’s t-test (many times referred simply as t-

test) needs normally distributed variables and is based in the 

statistical parameters mean and standard deviation. Frequently, 

the number of biological replicates available is low (three 

biological replicates in this case) and as a result the standard 

deviation is not well represented. RealTime StatMiner 

integrates the “moderated t-test” (see Figure 6), which is a 

variant of the “t-test” oriented to experiments with few 

biological replicates. The primary difference between the 

moderate t-test and the Student t-test is in the calculation of the 

standard deviation (Smyth 2004). 
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Fig. 5.  Possible distributions of the values of a given variable. For a given 

variable (e.g. gene expression) possible values (e.g. Cts) are represented on 

the X-axis while the frequency of such value is represented on the Y-axis. A 

represents a normal distribution; B represents a symmetric distribution with 

no single pick−therefore not normal; and C represents asymmetric 

distribution−again, also therefore not normal. 

  

BOX 3 – Apparently inverted fold change signal 

from Ct values analysis 

In Figure 4 the miRNA mmu-miR-23a indicates a 

positive fold change for tissue T (over-expression) 

despite of the average Ct values in tissue T [35.1, 35.3, 

35.3] being higher (less expressed) than those of tissue 

C [34.8, 34.5, 34.6].  The reason for this apparent 

contradiction lies in the normalization process (∆Ct 

computation) which is a key step in the analysis. Ct 

values without normalization correction are 

meaningless. The reference gene used for 

normalization in this project is snoRNA135, with a Ct 

of [21.0, 20.8, 20.8] in tissue C and a Ct of [23.5, 23.5, 

23.4] in tissue T. The computed ∆Ct values are [13.8, 

13.7, 13.8] for tissue C and [11.6, 11.8, 11.9] for tissue 

T, producing a positive −∆∆Ct of 2.0 or Log10RQ= 

0.602.  

RealTime StatMiner flags the detector in tissue T as 

“not detected” with a red color because its Ct value is 

higher than the cut-off of 35, hence it is not considered 

as a reliable Ct expression value.  

As a general rule, conclusions regarding differential 

expression can only be drawn when the compared Ct 

values are produced by reliable measurements (blue 

color in the fold change bar). 
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The remaining question is the following: can it be proven 

that the assumption of normal distribution of the Ct values is 

correct? A possible method is the Kolmogorov-Smirnov 

Goodness-of-Fit Test (Chakravarti, Laha, and Roy 1967). But 

if there are only a few samples the Kolmogorov-Smirnov test 

cannot be conclusive. When normality is not proven, using a 

non-parametric test (not assuming normality) reduces the risk 

of misinterpretation of the results. However, a non-parametric 

test is less powerful than the parametric test when the data is 

normally distributed.  

 

In conclusion, the “moderate t-test” is a powerful statistical 

method that has been widely and successfully used in gene 

expression analysis and microarray data where normality and 

other mathematical assumptions are not exact (Smyth et al. 

2007). The “moderate t-test” uses a variant of linear models 

with an empirically moderated estimate of the standard error—

effectively borrowing information from the ensemble variance 

of genes to aid inference about individual genes. This gives 

improved statistical power for even small sample sizes as 

referred in Henderson et. al. (2005).  

 

Non-Parametric: Wilcoxon rank sum test 

The “Wilcoxon rank-sum test”, also referred to in the 

bibliography as the “Mann-Whitney U-test” (Glover and 

Mitchell 2008), is the non-parametric alternative of the t-test 

available in RealTime StatMiner (see Figure 6) and is used 

when it’s been proven that the distribution of the Ct values is 

not normal. In the same way that the normality of a distribution 

can be proven, it is also possible to demonstrate the non-

normality of the distribution. One possible method is the 

Shapiro–Wilk test (Shapiro and Wilk 1965). The assumptions 

of normality or not normality are difficult to demonstrate in 

many qPCR projects given the low number of biological 

replicates available. In the case where normality is uncertain, 

the Wilcoxon test can be used. Another alternative is to base 

the assumption on previously published works (Dondrup et al. 

2009). 

 

VII. ONE-TAILED OR TWO-TAILED TEST 

In differential gene expression experiments, one hypothesis 

cannot include more than one detector. In other words, there is 

one hypothesis is per detector (e.g. mmu-miR-25) and per 

experimental condition mate pair (e.g. tissue T versus tissue 

C). Every hypothesis can be formulated in three ways: 

A) mmu-miR-25 is more expressed in tissue T than in 

tissue C. 

B) mmu-miR-25 is less expressed in tissue T than in tissue 

C. 

C) mmu-miR-25 is more or less (but not equally) 

expressed in tissue T than in tissue C. 

In the case of A) and B) the statistical test should be 

configured as a one-tailed test, while in the case of C) the test 

should be two-tailed. The two-tailed statistical test can be 

implemented by following a standard differential expression 

 
Fig. 7.  Experimental factors of the project. 

  

 
 

Fig. 6.  RealTime StatMiner parametric and non-parametric statistical tests. The test is conducted by selecting the two experimental conditions and setting the 

p-value cut-off. If the number of detectors is high you can select a multi-hypothesis correction method (see the False Discovery Rate section). 
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experiment in RealTime StatMiner. Although the “A” 

hypothesis should ideally not be tested using a two-tailed test, 

it is still possible to derive some conclusions from that case 

(see Box 4). 

 

VIII. PAIRED OR NON-PAIRED TEST 

There is a special experiment design that requires a specific 

type of test: the paired test. In the following example, there are 

two ways to design the project: 

A) Using 18 mice: each sample has an independent source 

animal. 

B) Using three mice: Samples of two tissues (T & C) are 

extracted from each mouse before any treatment (NT), after a 

low dose (0.005gr) and after using a high dose (0.01gr). 

In case of “A”, the samples are independent and not-paired. 

For this type of design a non-paired test is used like the 

moderated t-test or the Wilcoxon rank sum test (described 

before). In the case of “B” the samples are dependant and 

moreover they are paired. In such a scenario RealTime 

StatMiner integrates the parametric “paired t-test” (Glover and 

Mitchell 2008).  

 

Paired t-test: The experiment design 

If the experiment is paired, every sample belongs to one of 

the three mice (M1 or M2 or M3). The association between the 

sample and the mouse of origin is done in the experimental 

design (see Figure 7). When running the paired t-test in 

RealTime StatMiner it is mandatory to select the column in the 

experimental design related to the sample mouse source (see 

Figure 7).  

 

  
 

Fig. 7.  RealTime StatMiner paired tests. A) For paired experiments select the option “Are your samples paired?” in RealTime StatMiner and associate every 

sample with the mouse of origin. Samples will be paired according to the animal information. B) Paired t-test is available in the drop-down menu of the 

differential expression step, where the “Pair Column” of the experimental design is mandatory. 
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IX. THE FALSE DISCOVERY RATE (FDR) 

As previously mentioned, the hypothesis is atomic and 

therefore there is a single hypothesis per detector and per 

experimental condition comparison (e.g. mmu-miR-25 is more 

or less expressed in tissue T than in tissue C). Every statistical 

test is related to a single hypothesis. As a result, when 

comparing the expression of miRNAs between tissue T and C, 

the number of tests is equal to the number of miRNAs in the 

project (hundreds). Increasing the number of tests increases 

the probability of finding a significant p-value by chance (e.g. 

performing 100 tests we expect 5 p-values under 0.05 just by 

chance). To avoid this effect the False Discovery Rate (FDR) 

negatively adjusts the p-values according to the number of 

total tests. There are several methodologies to implement the 

FDR. The most popular are: 

 

• Benjamini-Hochberg (Benjamini and Hochberg 1995): 

This method assumes that the multi-tests are dependent—that 

the expression of the detectors has some level of correlation. 

This assumption is correct in many projects as it is known that 

genes are biologically co-regulated. 

• Bonferroni (Westfall and Young 1993). This approach 

does not make the assumption that the genes of the project 

could be directly or indirectly co-regulated. If the dependency 

between tests (between the expression of the genes) is not 

assumed, the evidence of the differential expression is more 

BOX 4 – What if a two-tailed test is used for a one-

tailed hypothesis? 

If the following (one-tailed) hypothesis: “mmu-miR-25 

is expressed more in tissue T than in tissue C” is tested 

using RealTime StatMiner (which uses a two-tailed 

test), there are three possible scenarios. Setting the p-

value cutoff to 0.05, the conclusions of the different 

scenarios are: 
 

1. If the p-value in the two-tailed test is lower than 

0.05 and the fold change is positive, then the result of 

the one-tailed test is also significant for that 

hypothesis.  

2. If the p-value in the two-tailed test is lower than 

0.05 and the fold change is negative, then the result of 

the one-tailed test is always not-significant for that 

hypothesis.  

3. If the p-value in the two-tailed test is higher than or 

equal to 0.05, then results of the one-tailed test may or 

may not be significant. The only way to know is to 

configure the test as one-tailed.  
 

In summary: in some cases when the one-tailed is not 

available, it is still possible to generate evidence of 

differential expression for a one-tailed hypothesis using 

the two-tailed test. 

 

 
 

Fig. 8.  RealTime StatMiner 2-way ANOVA. Selecting two experimental factors (e.g. treatment dose and tissue type) allows you testing the effect of each of them 

independently (first and second column) and the effect of the interaction (third column). The legend of the resulting figure shows whether or not the p-values are 

significant. 
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difficult to demonstrate.  

In summary using the Bonferroni method the p-values is 

higher than when using Benjamini-Hochberg. RealTime 

StatMiner integrates these two methods, as well as the Holm 

method (Holm 1979)− a sequentially rejective Bonferroni 

procedure that is much less conservative but that still 

maintains the experiment-wise error rate. Another alternative 

method in RealTime StatMiner is the Hochberg method 

(Hochberg 1988), a more powerful procedure than Holm’s 

method. Instead of testing sequentially, starting with the 

smallest p-value, Hochberg starts with the largest p-value and 

stopps when a significant result is obtained and declaring all 

untested results to be significant.   

X. MULTI-FACTOR ANALYSIS 

The moderate t-test can compare “experimental conditions” 

(e.g., tissue C versus tissue T) and perform multi-comparisons 

(e.g. “not-treated” versus “low treatment and high treatment”). 

However, it does not allow the comparison of “experimental 

factors”. In other words the moderate t-test cannot prove that 

the effect of the treatment differs across tissues. 

 

The 2-way ANOVA test (Glover and Mitchell 2008) can 

demonstrate whether  the tissue, the treatment or the 

interaction between both factors has an impact on gene 

expression. In this example (as in most of the cases) the 

comparison is made between two factors. The 2-way ANOVA 

test is implemented in RealTime StatMiner and produces a p-

value for every detector and for each of the following three 

cases (see Figure 8): 

 

1. The effect of the interaction between tissue and treatment 

in every detector. 

2. The effect of the tissue type in the expression of every 

detector. 

3. The effect of the dose of the treatment in the expression 

of every detector. 

 

The 2-way ANOVA implemented in RealTime StatMiner 

will identify those miRNAs that have a significantly different 

response to the treatment depending on the tissue where they 

are expressed. In our example the input data is balanced 

because for every experimental condition there are exactly 

three biological replicates. The 2-way ANOVA can be 

balanced or unbalanced (where the number of biological 

replicates is not equal in every condition). RealTime StatMiner 

supports both balanced and unbalanced datasets.  

 

XI. RESULTS 

The expression of 376 miRNAs is compared between two 

mouse tissues using the qPCR Applied Biosystems rodent 

miRNA panel A. 161 detectors of the plate were flagged as 

non-expressed in Tissue C and 172 were flagged as not 

expressed in Tissue T, using a cut-off CT of 35 (134 were 

flagged in both tissues). The project was normalized using the 

endogenous control snoRNA135. The column “Condition” is 

used to impute missing values. 62 out of the 178 non-flagged 

miRNAs where found significantly (p-value < 0.05) 

differentially expressed (56 upregulated and 6 downregulated), 

between these two tissues using the parametric paired t-test 

and adjusting the p-value with the Benjamini-Hochberg FDR 

method. Finally some samples were treated with a compound 

using a low dose (0.005gr) and others using a high dose 

(0.01gr). Running a 2-way ANOVA analysis, we found that for 

110 out of the 178 non-flagged miRNAs the treatment 

significantly affects the expression, (p-value 0.05) depending 

on the tissue. 
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SUPPLEMENTARY INFORMATION 

You can find the dataset of this project and other relevant 

information at: 

 http://www.integromics.com/WhitePaper_qPCR_Statistics 

 

REFERENCES 

Applied Biosystems. 2006. Amplification Efficiency of TaqMan Gene 

Expression Assays. Applied Biosystems Application Note. 

Benjamini, Yoav, and Hochberg,  Yosef. 1995. Controlling the False 

Discovery Rate: A Practical and Powerful Approach to Multiple Testing. 

http://dx.doi.org/10.2307/2346101. 

Canales, Roger D., Yuling Luo, James C Willey, Bradley Austermiller, 

Catalin C. Barbacioru, Cecilie Boysen, Kathryn Hunkapiller, et al. 2006. 

Evaluation of DNA microarray results with quantitative gene expression 

platforms. Nature Biotechnology 24, no. 9 (September): 1115-1122. 

doi:10.1038/nbt1236. 

Chakravarti, I.M.,  R.G. Laha, and J Roy. 1967. “Handbook of Methods of 

Applied Statistics.”   Handbook of Methods of Applied Statistics, 1:392-

394. John Wiley and Sons. 

Dondrup, Michael, Andrea T Hüser, Dominik Mertens, and Alexander 

Goesmann. 2009. An evaluation framework for statistical tests on 

microarray data. Journal of Biotechnology 140, no. 1-2 (March 10): 18-

26. 

Fisher, R.A. 1925. Statistical Methods for Research Workers . Oliver and 

Boyd. 

Gillis, A J M, H J Stoop, R Hersmus, J W Oosterhuis, Y Sun, C Chen, S 

Guenther, et al. 2007. High-throughput microRNAome analysis in human 

germ cell tumours. The Journal of Pathology 213, no. 3 (November): 

319-328. doi:10.1002/path.2230. 

Glover, Thomas, and Kevin Mitchell. 2008. An Introduction to Biostatistics. 

2nd ed. Waveland Pr. Inc, September 30. 

Heid, C.A., J Stevens, K. J .Livak, and P.M. Williams. 1996. Real time 

quantitative PCR. Genome Research 6, no. 10 (October): 986-994. 

Higuchi, R., C. Fockler, G. Dollinger, and R. Watson. 1993. Kinetic PCR 

analysis: real-time monitoring of DNA amplification reactions. 

Bio/Technology (Nature Publishing Company) 11, no. 9 (September): 

1026-1030. 

Hochberg, Yosef. 1988. A Sharper Bonferroni Procedure For Multiple Tests 

Of Significance. Biometrika 75: 800-803. 

Holm, S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. 

Scandinavian Journal of Statistics 6: 65-70. 

Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression 

data using real-time quantitative PCR and the 2(-Delta Delta C(T)) 



Integromics White Paper - September 2009 

 

© 2009 Integromics SL 

9 

Method. Methods (San Diego, Calif.) 25, no. 4 (December): 402-408. 

doi:10.1006/meth.2001.1262. 

Nolan, Tania, Rebecca E. Hands, and Stephen A. Bustin. 2006. 

Quantification of mRNA using real-time RT-PCR. Nat. Protocols 1, no. 

3 (November): 1559-1582. doi:10.1038/nprot.2006.236. 

Shapiro, S., and M.B. Wilk. 1965. An analysis of variance test for normality 

(complete samples). Biometrika 52: 591-611. 

Smyth, Gordon K. 2004. Linear models and empirical bayes methods for 

assessing differential expression in microarray experiments. Statistical 

Applications in Genetics and Molecular Biology 3: Article3. 

doi:10.2202/1544-6115.1027. 

Smyth, Gordon K, Matthew Ritchie, Natalie Thorne, and James Wettenhall. 

2007. Linear Models for Microarray Data . The Walter and Eliza Hall 

Institute of Medical Research Melbourne. 

VanGuilder, Heather D., Kent E. Vrana, and Willard M. Freeman. 2008. 

Twenty-five years of quantitative PCR for gene expression analysis. 

BioTechniques 44, no. 5 (April): 619-626. doi:10.2144/000112776. 

Westfall, Peter H., and Young, S. Stanley . 1993. Resampling-Based Multiple 

Testing: Examples and Methods for p-Value Adjustment. 1st ed. Wiley-

Interscience, January 5. 

 


