microRNA biomarkers in body fluids of prostate cancer patients

Ruprecht Kuner *, Jan C. Brase 1, Holger Sültmann, Daniela Wuttig

Unit Cancer Genome Research, Division of Molecular Genetics, German Cancer Research Center and National Center of Tumor Diseases, Heidelberg, Germany

1. Introduction

The discovery of miRNAs is an emerging field in cancer research with potential novel applications in diagnostics and therapy [1]. Specific miRNAs aberrantly expressed in tumor tissues play an important role in cancer onset and disease progression by targeting cancer-relevant coding genes. The intratumoral increase of specific miRNAs can be reflected in body fluids of the patients. Moreover, circulating miRNA pattern in patients may be associated with the genetic predisposition or immune system escape. Therefore, miRNAs involved in early tumorigenesis, tumor progression and metastasis represent promising diagnostic or prognostic marker, respectively [2]. Current methods for prostate cancer detection, like PSA screening, lead to significant overtreatment [3]. Thus, the requirements for novel biomarkers should address the stratification of patients with severe tumor diseases which become clinically relevant and need therapeutic intervention. Several gene and miRNA biomarkers and signatures in tissues were described to be associated with prostate cancer onset or progression. Despite the increasing number of miRNA reports, the analysis of circulating miRNAs is still in its infancy. Previous comprehensive miRNA biomarker screening in serum and plasma obtained promising results, but missing standards for sample preparation, quality control and normalization may hamper robustness of measurements and accuracy of putative disease biomarkers. Therefore, further insights into miRNA abundance and characteristics in surrogates are necessary to overcome limitations of the present detection methods.

2. Current status of biomarkers for prostate cancer

2.1. Diagnosis of prostate cancer

Prostate cancer is a common tumor disease in western countries and a leading cause of cancer-driven mortality in men. This entity often comprises slowly growing tumors, which are diagnosed at the age of 70 or even later. At this age, the incidence of prostate cancer is very high (30–70%), but the majority of prostate cancer cases behave clinically insignificant [4]. Of note, overdiagnosis and overtreatment are the key challenges for prostate cancer patient care. First, no malignancy was found in biopsies for the majority of men with increased blood PSA level >4 ng/ml, which indicated a high rate of unneeded interventions. Second, current treatment strategies like radical prostatectomy and radiation therapy still...
have the risk for erectile dysfunction and urinary incontinence. Two large clinical trials reported conflicting results of PSA screening on prostate cancer mortality [5,6]. In October 2011, 40 years after PSA was identified, the U.S. Preventive Services Task Force (USPSTF) recommended against PSA screening for prostate cancer detection [3]. So far, no prognostic biomarker entered routine diagnostics of prostate cancer. The prospective requirements for prostate cancer biomarkers address the stratification of patients with aggressive tumors which need therapeutic intervention. For this purpose, robust gene and miRNA biomarker associated with clinical significant prostate cancer may help to improve patient stratification or may serve as diagnostic adjunct in combination with histopathological and clinical parameters (Fig. 1.).

2.2. Genetic alterations in prostate cancer: objectives for diagnostic and prognostic biomarkers

The tumorigenesis and progression of prostate cancer is accompanied by distinct molecular alterations. For example, early chromosomal rearrangement leads to the TMPRSS2-ERG fusion gene in about half of the patients, and can be detected by FISH or ERG immunohistochemistry [7–9]. Such cancer-specific fusion genes represent promising targets for molecular diagnosis and targeted therapy approaches [10]. Further common genetic alterations concern epigenetic silencing like the GSTP1 promotor hypermethylation or the loss of tumor suppressor genes p27 and NKX3.1 in localized prostate cancer [11,12]. PTEN loss is a frequent event towards a metastatic disease, especially in combination with ERG dysregulation [13]. In late disease stage, aberrant androgen receptor (AR) signaling, caused by AR mutation, amplification or aberrant splice variants, is a prerequisite for castration resistant prostate cancer [14].

Common genetic alterations in tumors have also an impact on the activity of specific miRNAs. Genome-wide epigenetic silencing in prostate cancer was suggested to affect miRNAs in 30% of the identified loci [15]. For example, aberrant methylation leads to a downregulation of miR-145 [16]. miR-16 was also found to be downregulated in prostate cancer compared to benign tissues or benign prostatic hyperplasia (BPH) [17–19], and was controversially discussed as putative diagnostic marker in surrogates [20–22]. Thus, miRNA alterations based on amplification, deletion or epigenetic silencing may lead to the development of clinical useful diagnostic or prognostic biomarkers.

2.3. Unraveling gene and miRNA expression signatures in prostate cancer

In clinical practice, preoperative PSA, tumor stage, Gleason grade and surgical margins are used as prognostic factors and are essential to select the best treatment strategy. After surgery, biochemical (PSA) relapse indicates further disease progression and dissemination. These parameters have been used to screen for prognostically relevant gene and miRNA signatures upon expression profiling. In contrast to well characterized tumor entities like breast cancer, expression profiling of prostate tumors did not unravel robust molecular subtypes. However, several tumor tissue derived signatures based on microarrays have been associated with prognostic parameters like Gleason score, biochemical recurrence and lethality [23,24]. Moreover, integrative gene and miRNA analyses may improve tumor characterization and patient stratification [25–28]. Such promising tumor-related gene and miRNA expression signatures should be validated in larger clinical trials and, in best case scenario, be applied to less-invasive diagnostic techniques.

Large scale miRNA expression analyses using microarrays indicated a common deregulation of miRNAs in tumors compared to their benign counterparts [29,30]. The miRNA profiles fairly reflect both the origin of tissues and the malignant phenotype. In prostate cancer, several studies showed differences in the abundance of miRNAs in localized or metastatic prostate cancer compared to benign prostate epithelium or BPH [17–19,25,27,30–34]. More than 180 different miRNAs were described to be deregulated in prostate cancer in at least one screening study. More than 100 miRNAs appeared only in single studies. Of note, the miRNA coverage of different platforms used in these studies strongly varies (between 114 and 723 miRNAs), and the number of finally measurable targets in individual platforms is often unclear. In later disease stage, miRNA signatures were identified to be associated with a metastatic or hormone-refractory disease [17,31]. For example, Maritens-Uzunova et al. described a 25 miRNA signature which correctly classified between a local and metastatic disease in about 80% of the patients. Several miRNAs were also shown to be deregulated and functionally relevant across different cancer diseases [35]. For example, miR-21 upregulated in different solid tumors like prostate cancer was shown to act as oncogene by targeting tumor suppressors like PTEN and PDCD4. miRNA-21 activation might enhance general processes of tumor invasion and metastasis by promoting extracellular remodeling in the tumor environment [36]. In contrast, miR-15a and miR-16-1 are transcribed as a cluster, which is frequently downregulated in prostate cancer [37]. These miRNAs control transformation and cell proliferation by targeting oncogenes like BCL-2 and CCND1.

For most of the deregulated miRNAs it is still unclear whether they can serve as diagnostic or prognostic markers. However, aberrantly expressed miRNAs in tumor tissues may be reflected in patient body fluids, and therefore represent a promising source for putative surrogate marker.

3. miRNAs as non-invasive tumor marker in body fluids

3.1. miRNome in human body fluids

miRNAs (miRNAs) were discovered in the early 2000s as a new class of small functional RNA molecules, which play an important role in posttranscriptional gene regulation. Transcribed microRNA (miRNA) sequences and their reverse-complement base pairs form
double stranded RNA hairpin loops, defined as precursor miRNAs, which are exported from the nucleus and processed to about 22 nucleotide long mature miRNAs. In the miRBase database, Release 18 (Nov 2011), 1527 different hairpin precursor miRNAs are assigned in the human genome [38].

Detection of miRNAs in body fluids represents a promising non-invasive diagnostic utility for cancer diseases. Between 200 and 500 miRNAs were detected by qPCR in different human body fluids like plasma, urine or breast milk [39]. The utility of distinct body fluids for miRNA biomarker discovery may be dependent on the disease origin. For example, miRNAs in sputum, bronchial lavage or exhaled breath may be useful to reflect early stage lung cancer, whereas miRNAs in the urine have been explored for biomarker associated with urological cancer. Circulating miRNAs were firstly described in serum and plasma as promising biomarkers for cancer diagnostics [22,40,41]. Interestingly, circulating miRNAs are robust against RNase in cell-free compartments like serum and resist high variability of pH and temperature [22]. The release of miRNAs into the blood stream and their functional consequences are poorly understood. It has been shown that miRNA and miRNA can be integrated into microvesicles and or associated with protein complexes [42,43]. In cancer patients, distinct miRNA composition in microvesicles may drive invasion, angiogenesis and metastasis [44,45].

So far, peripheral blood has been mainly used to analyze cell-free miRNAs in cancer patients [46]. A good concordance of miRNA expression was shown between serum and plasma of the same individuals [22]. Here, the miRNA abundance was not affected by residual blood cells or cell debris. Similarly, it has been shown that the miRNA profiles differ between serum and blood cells [40]. However, the variability of miRNA abundance in blood components like serum, plasma or blood cells is controversially discussed. miRNA profiles from blood cells may be confounded by the heterogeneous composition of hematopoietic cells and their specific miRNA profiles [47]. Furthermore, it was shown that red blood cells and the degree of hemolysis influence the plasma miRNA content [48,49]. Potential miRNA biomarkers were also identified in circulating tumor cells previously sorted from whole blood [50]. Thus, standardized protocols for the collection, processing, shipment and storage of body fluids are prerequisites to ensure the reliable measurement of miRNAs.

3.2. miRNA detection: prospects and challenges

The extraction and quantification of circulating miRNAs is challenging with respect to the low recovery, standards for quality control, normalization and statistical analysis (Fig. 2). For example, the low concentration of cell-free circulating miRNAs from 100 μl serum or plasma cannot be accurately calculated by spectrophotometry [51]. Therefore, RNA extraction protocols usually recommend a constant starting volume of the body fluid. A frequently adopted protocol describes the use of Trizol and Chloroform for denaturation and separation of proteins followed by miRNA purification from aqueous phase by commercially available column-based extraction kits [51]. Further protocols are established for the miRNA detection in peripheral blood cells [52] or in exosomes isolated from body fluids [53]. Synthetic non-human miRNAs as spike-in control were recommended to monitor the extraction efficiency and to normalize sample-to-sample variations [22,54]. However, spiked and endogenous miRNAs may behave different with respect to the recovery rate or the subsequent efficiency and dynamic range of quantification techniques. Alternatively, human miRNAs like RNU6B or miR-16 were often used as endogenous controls to account for technical variances and biological variability. But, single miRNAs might respond to different physiological and pathological conditions. For example, serum miR-16 level was found to be associated with surgical margin positivity in prostate cancer patients [21]. Comprehensive circulating miRNA profiling studies in distinct disease areas are rare and often miss robust standards for miRNA preparation and quantification. Bianchi and colleagues performed a large screening study in serum of 174 patients using qPCR low-density miRNA plates [55]. Here, miRNAs were quality assessed to account for sequence verification, robust and reproducible detection (sensitivity), PCR efficiency (linearity) and potential preoperative bias based on the patient cohorts. Furthermore, different normalization procedures revealed a good concordance between median normalization and housekeeping method (miR-197, miR-19b, miR-24, miR-146, miR-15b, miR-19a), qPCR technology is mostly used for screening and validation of putative miRNA biomarker in surrogates, which is a drawback for the objective evaluation of technical limitations. So far, only few studies reported the use of next generation sequencing technology, which may be due to the lower sensitivity. Solexa sequencing enabled the detection of about 100 serum miRNAs [40,56]. Alternative miRNA quantification technologies have been recently described like the use of fluorescence-labeled beads [57], modified nanoparticles [58] or electrochemical genosensor without bias-prone PCR and labeling reaction [59]. The latter method is based on the hybrid formation between the circulating microRNA and its inosine substitute capture probe on an electrode surface. The subsequent guanine oxidation generates an electrical signal that...
is evaluated by a differential pulse voltammeter. The future application of circulating miRNAs into clinical routine diagnostics will depend on the efforts to simplify and standardize the methods for sample preparation, detection and data processing.

3.3. Circulating miRNAs in prostate cancer patients

Few comprehensive miRNA profiling studies have been focused on circulating miRNA biomarkers in prostate cancer patients (Table 1). Several studies reported comprehensive miRNA screening using qPCR or microarray technology [54,60–63] or performed quantification of single miRNAs in distinct prostate cancer patient cohorts and healthy individuals [21,22,64–66]. miRNAs were mostly studied in serum and plasma of men. Bryant and colleagues screened for diagnostic and prognostic miRNAs in plasma samples, and were also able to identify two of five miRNAs as putative diagnostic markers in urine samples [60]. The overlap of miRNA candidates between different studies is very small. Here, it is likely that different miRNA platforms, quantification protocols, statistical cutoffs, patient preselection and small cohort size limits this comparison.

Of note, two promising miRNAs, miR-141 and miR-375, were suggested as diagnostic and prognostic marker across independent studies. Increased plasma miR-141 level was firstly described in patients with metastatic prostate cancer compared to healthy individuals [22]. Additionally, circulating miR-141 was moderately correlated with serum PSA level. Of note, elevated serum level of miR-141 have been independently confirmed for metastatic prostate cancer like miR-21 and miR-221. Deregulation of these miRNAs was described in tumor tissue [17–19,25,27,30,31,33,34] and serum [64–66] of prostate cancer patients. The identification of downregulated miRNAs in patient’s surrogate may be more challenging with respect to the sensitivity and valid detection standards. Further commonly increased miRNAs in prostate tumor tissues like miR-20a, miR-25, miR-93 and miR-106b represent good candidates for their detection in body fluids. For example, miR-93 was found to be elevated in sera of high-risk prostate cancer patients [62]. However, larger validation studies are needed to verify putative miRNA biomarkers for their association with a certain disease status. Furthermore, blood-based biomarker may be influenced by other physiological or pathological conditions like viral infections. For example, abundance of miR-375, at present one of the most

Table 1

<table>
<thead>
<tr>
<th>References</th>
<th>Clinical parameter</th>
<th>Body fluid</th>
<th>Cohort design</th>
<th>miRNA quantification platform</th>
<th>Normalization</th>
<th>miRNA candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brase et al. (2010)</td>
<td>Prognosis: low vs. high grade</td>
<td>Serum</td>
<td>Screening n = 21, validation n = 116</td>
<td>qPCR plates (667 miRNAs), qPCR assays</td>
<td>Spike-in cel-miR-39, -54, -239</td>
<td>miR-141, -375</td>
</tr>
<tr>
<td>Moltzahn et al. (2011)</td>
<td>Diagnosis tumor vs. healthy</td>
<td>Serum</td>
<td>Screening n = 48, validation same cohort</td>
<td>qPCR plates (677 miRNAs)</td>
<td>Median</td>
<td>miR-24, -26b, -30c, -93, -106a, -223, -451, -874, -1207-5p, -1274a</td>
</tr>
<tr>
<td>Selth et al. (2011)</td>
<td>Diagnosis, prognosis tumor vs. healthy, low vs. high grade</td>
<td>Serum</td>
<td>Screening murine TRAMP model, validation n = 50</td>
<td>Microarrays (609 murine miRNAs), qPCR assays</td>
<td>cel-miR-39</td>
<td>Diagnosis miR-141–298, -346, -375, prognosis miR-141, -375</td>
</tr>
<tr>
<td>Bryant et al. (2012)</td>
<td>Diagnosis, prognosis tumor vs. healthy, local vs. metastatic</td>
<td>Plasma microvesicles, urine</td>
<td>Screening n = 106, validation n = 119, urine: n = 135</td>
<td>qPCR low-density plates (742 miRNAs), qPCR assays</td>
<td>Screening: inter-plate calibrators, validation: cel-miR-39, urine RNU44/48</td>
<td>Diagnosis miR-107–5p, -754–3p (plasma, urine), prognosis miR-141, -375 (plasma)</td>
</tr>
<tr>
<td>Chen et al. (2012)</td>
<td>Diagnosis tumor vs. BPH, healthy</td>
<td>Plasma</td>
<td>Screening n = 42, validation n = 178</td>
<td>Microarrays (1146 miRNAs), qPCR assays</td>
<td>Screening quantile validation RNU6B</td>
<td>let-7e, -7c, miR-30c–622, -1285</td>
</tr>
<tr>
<td>Mitchell et al. (2008)</td>
<td>Diagnosis tumor vs. healthy</td>
<td>Plasma</td>
<td>No screening, n = 50</td>
<td>qPCR assays miR-100, -125k, -141, -143, -205, -296</td>
<td>Spike-in: cel-miR-39, -54, -238</td>
<td>miR-141</td>
</tr>
<tr>
<td>Zhang et al. (2010)</td>
<td>Prognosis local vs. metastatic</td>
<td>Serum</td>
<td>No screening, n = 56</td>
<td>qPCR assay miR-21, RNU6B</td>
<td>miR-21</td>
<td></td>
</tr>
<tr>
<td>Agaoglu et al. (2011)</td>
<td>Diagnosis, prognosis tumor vs. healthy, local vs. metastatic</td>
<td>Plasma</td>
<td>No screening, n = 71</td>
<td>qPCR assays miR-21, miR-141, miR-221, RNU1A</td>
<td>Diagnosis miR-21, -221, prognosis miR-141</td>
<td></td>
</tr>
<tr>
<td>Mahn et al. (2011)</td>
<td>Diagnosis tumor vs. BPH, healthy</td>
<td>Serum</td>
<td>No screening, n = 83</td>
<td>qPCR assays miR-20a, -21, -141, -145, -221, let-7i</td>
<td>cel-miR-39</td>
<td>miR-26a</td>
</tr>
<tr>
<td>Shen et al. (2012)</td>
<td>Prognosis low vs. high grade</td>
<td>Plasma</td>
<td>No screening, n = 82</td>
<td>qPCR assays miR-20a, -21, -141, -145, -221</td>
<td>Absolute quantification</td>
<td>miR-20a, -21, -145, -221</td>
</tr>
</tbody>
</table>
promising circulating miRNA biomarker for prostate cancer, is described to be affected by HPV infection [69]. Therefore, discriminative power of single miRNAs may be restricted by those confounding factors. A multi-marker miRNA model or robust miRNA signature for the stratification of specific diseases may overcome such limitations.

4. Conclusions

The identification of circulating miRNA biomarkers in body fluids is far from being exhausted. Specific disease-associated miRNA patterns have been identified in affected tissues and cells, but also in body fluids of cancer patients. In prostate cancer, most of the circulating miRNA studies were done using serum or plasma of the patients. Here, promising results were obtained for potentially prognostic miRNA biomarkers (e.g. mir-141 and mir-375), which have been associated with aggressive tumors and metastatic disease in independent studies. Such findings have to be validated in larger patient and control collective, e.g. to account for individual confounding factors like prostatitis, BPH, other common age-dependent diseases and epidemiological characteristics. Furthermore, urine-based test for the prostate cancer gene PCA3 has already been used to detect prostate cancer. Specific miRNA patterns in the urine may also reflect early or advanced prostate cancer disease, but no comprehensive study for circulating miRNA in urine was reported so far.

In summary, circulating miRNAs may represent promising biomarkers for early detection of a cancer disease or to predict clinical outcome. However, the quantification of circulating miRNAs in prostate cancer is in its infancy. The dozen studies are very heterogeneous with respect to the experimental design, patient cohort and clinical question, and therefore lack comparable results. A major weakness of present retrospective biomarker studies is the lack of comprehensive and meaningful follow up data of the patients. Only very few biomarker studies focused on prognostic endpoints like cancer-related death or progression free survival, but instead used surrogates like PSA biochemical relapse. The future applicability of circulating miRNA biomarker into routine clinical practice will depend on the establishment of robust methods and standards for miRNA detection, as well as the validation of promising candidates in large prospective studies.

Acknowledgments

This review is linked to experimental studies, which were funded by the German Federal Ministry of Education and Science in the framework of the program for medical genome research (FKZ: 01GS0890). The authors thank Maria Falth and Stephanie Gade for the stimulating discussion about miRNA research in cancer.

References