maxAlike: maximum likelihood-based sequence reconstruction with application to improved primer design for unknown sequences

Peter Menzel1,2,3, Peter F. Stadler1,3,4,5,6,7 and Jan Gorodkin1,2,*

1Center for non-coding RNA in Technology and Health, 2BHV, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg, Denmark, 3Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtestraße 16-18, D-04107 Leipzig, 4Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 5Fraunhofer Institut für Zelltherapie und Immunologie, Perlickstraße 1, D-04103 Leipzig, Germany, 6Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria and 7The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, USA

ABSTRACT

Motivation: The task of reconstructing a genomic sequence from a particular species is gaining more and more importance in the light of the rapid development of high-throughput sequencing technologies and their limitations. Applications include not only compensation for missing data in unsequenced genomic regions and the design of oligonucleotide primers for target genes in species with lacking sequence information but also the preparation of customized queries for homology searches.

Results: We introduce the maxAlike algorithm, which reconstructs a genomic sequence for a specific taxon based on sequence homologs in other species. The input is a multiple sequence alignment and a phylogenetic tree that also contains the target species. For this target species, the algorithm computes nucleotide probabilities at each sequence position. Consensus sequences are then reconstructed based on a certain confidence level. For 37 out of 44 target species in a test dataset, we obtain a significant increase of the prediction accuracy drops by only 1% on average across all species for 77% of trees derived from random genomic loci in a test dataset.

Availability: maxAlike is available for download and web server at: http://rth.dk/resources/maxAlike.

Supplementary information: Supplementary data are available at Bioinformatics online.

Received on August 2, 2010; revised on November 18, 2010; accepted on November 19, 2010

1 INTRODUCTION

With increased opportunities for high-throughput sequencing, a large number of additional genomes will be sequenced in the near future. Given the limitations of these sequencing technologies, however, it is likely that routinely produced genomic sequences will be incomplete at various levels. Also, the genomic information for less ‘popular’ model organisms or economically important species might remain unavailable for a long time. It is still essential to infer as much knowledge as possible about incomplete or missing genomic data in relation to specific analyses, such as studying the distribution of gene families across the phylogeny of species. The relative position of the target species in the evolutionary tree is typically known or can be inferred from the partial sequence information that is already available. With the rapidly growing collection of sequence data from diverse organisms, homologs for a certain region of interest can be utilized, together with their inherent pattern of evolutionary variation. We present an algorithm—maxAlike—that aims at reconstructing sequences in a particular target species, based on a species phylogeny and sequence homologs from other species.

The maxAlike algorithm uses a multiple sequence alignment and a corresponding phylogenetic tree, annotated with phylogenetic distances on the branches, to estimate mutation rates for each alignment column. It then infers nucleotide probabilities for each site in the theoretical homologous sequence in the target species. From the estimated nucleotide probabilities, the entire sequence can be reconstructed, given a certain level of confidence. The reconstructed sequence can then be utilized for several applications.

The sensitivity and specificity of homology search methods that are based either on primary sequence alone or on profile alignment algorithms can be increased by employing a search query that is optimized for the target species of the homology search (Menzel et al., 2009).

A very important application of (partially) reconstructed sequences is the design of oligonucleotide primers for a PCR experiment, e.g. for analysis of expression of the targeted (re-)sequencing of a particular region that is not or incompletely represented in a genome assembly. The successful amplification of a gene sequence depends on a careful selection of a pair of short primers, which, besides certain thermodynamic properties,
should have the highest possible sequence identity to their target site. Designing these primers for yet unsequenced genes is still a difficult problem, often based on trial and error. One of the first approaches that comes to mind is to derive primers from an available homologous sequence in a phylogenetically proximal species. Alternatively, if more than one homolog is known, primers can be derived from a consensus sequence, based on a multiple sequence alignment of the homologs. However, the nearest-neighbor approach might be substantially biased toward one end in the phylogeny and does not take sequence conservation into account, whereas the multiple-alignment approach usually does not consider the exact phylogenetic position of the target species and a careful selection of the seed sequences is an additional parameter. Another issue is the handling of ambiguous sites in the alignment. Restricting the consensus sequence to only perfectly conserved sites might limit the available nucleotides too much in order to derive a primer pair with the desired properties, e.g. thermodynamics, length or base composition. A common remedy is the selection of the most frequent nucleotide at each alignment position to derive the consensus sequence. These problems are inherently solved by the maxAlike reconstruction algorithm, which takes the phylogenetic position of the target species as well as all possibly available homologs into account.

Primer design by including phylogenetic information has been addressed earlier, but with a more narrow scope. In particular, the primer4clades approach (Contreras-Moreira et al., 2009) derives a phylogenetic tree from a multiple sequence alignment of protein-coding genes. From this, the user can, through manual intervention though, restrict the input sequences to a phylogenetic group that is considered for primer design based on a CODEHOP algorithm. However, it does not compute nucleotide probabilities and is not suitable for reconstructing arbitrary non-protein-coding sequences, which potentially can occupy an even larger portion of the genome than the ~1.2% occupied by the protein-coding genes (Mattick and Makunin, 2006). In fact, in the light of the ENCODE project (ENCODE Project Consortium, 2007), which showed that more than 90% of the human genome is transcribed, it may become relevant to design primers on a genome-wide scale. The restriction to protein-coding regions and the limited availability as a web server makes a comparison with other methods difficult for a genome-wide benchmark. The uniprime2 web server (Boutros et al., 2009) employs a pipeline with homology search, multiple alignment and primer design software to derive primers from conserved parts of a given gene. However, no phylogenetic information is taken into account. Methods for designing degenerate primers start by finding highly conserved regions across a sequence alignment, e.g. by solving a Set Covering Problem (Jabado et al., 2006). Depending on the input alignment, this often limits the number of available alignment positions for the primer design considerably. The maxAlike algorithm, however, not only highlights conserved regions by creating sequence profiles but also makes all possible sequence positions available for primer design with a certain confidence threshold. Using a probability threshold for each nucleotide is similar to exploiting base quality scores for selecting regions for primer design (Li et al., 1997). The output of maxAlike can also be used for designing degenerate primers, where two or more nucleotides are allowed at one position, by choosing the most likely occurring nucleotides for this site. By relying on the highly probable nucleotide for a site, however, the total number of degenerate sites can be reduced, which in turn increases the specificity of the primer sequence. This makes maxAlike the optimal choice for designing primers, when the sequence of the target gene is not known, but homologous sequences of other species and a phylogenetic tree including the target species are available. These data serve as input to the maxAlike web server, which in turn allows for estimation of primers using Primer3 from the reconstructed sequence in the target species.

The principle of the maxAlike sequence reconstruction is similar to the reconstruction of genes from ancestral species from their extant offspring, but maxAlike reconstructs a gene sequence on a leaf node of the, possibly unrooted, species tree. Using the information from the extant offspring, this has been shown to be a powerful tool for testing hypotheses on the function and evolution of genes from extant taxa (Thorne et al., 2004) and for a review. Ancestral sequence reconstruction programs infer the sequences at the interior nodes of the tree from their descendants in a rooted phylogeny. In contrast to these, maxAlike reconstructs the most likely sequence at an additional leaf node in the possibly unrooted species tree. Therefore, the sequence information of all taxa influence the reconstruction of the target sequence. Several methods for reconstructing ancestral sequences from their descendants have been developed so far, of which methods based on the maximum likelihood principle have been shown most successful (Zhang, 1997). Recent applications include the ancestor2r web server (Diallo et al., 2010) or the Orthobase program (Paten et al., 2008). Not only in the case of prokaryotes, the ancestral relationships between species might not be clear, but the phylogenetic relationship among the taxa can often be derived from the available sequence data. In these cases, the maxAlike algorithm is still applicable, without necessarily rooting the tree.

2 MATERIALS AND METHODS

2.1 Sequence reconstruction algorithm

The maxAlike algorithm aims at reconstructing the nucleotides of a DNA sequence homolog in a given target species by employing a maximum likelihood computation over a phylogenetic tree, which results in residue probabilities for each position in the target sequence.

The input for maxAlike is a multiple sequence alignment M and a phylogenetic tree T, which represents the phylogenetic relationships and distances among the species. Additionally, one of the species in the tree (but absent in the multiple alignment) is chosen as the target species for the reconstruction.

Maximum likelihood (ML) methods require an explicit residue substitution model for calculating substitution probabilities given a certain branch length. For each alignment position, the ML algorithm performs a post-order traversal of the tree, starting from the root. From the known residues found at the leaves of the tree, it then computes likelihoods for each nucleotide at the interior nodes of the tree, based on the substitution model and the branch lengths between the tree nodes (Felsenstein, 1981).

The maxAlike algorithm follows two steps, see Figure 1. In the first step, T is restricted to the species contained in the alignment, and for each alignment column i, a relative substitution rate $\hat{\mu}_i$ is estimated by numerically optimizing the likelihood of the tree $\hat{\theta} = \text{argmax}_{\theta} L(M, \theta)$, where θ represents the nucleotide substitution rates and L is the likelihood function. The second step, which is restricted to the target species, constructs the tree among the taxa and for each nucleotide at the internal nodes of the tree, it then computes likelihoods for each nucleotide at the interior nodes of the tree, based on the substitution model and the branch lengths between the tree nodes (Felsenstein, 1981).
maxAlike: sequence reconstruction and primer design

Re-rooting Tree

Calculation of Residue Probabilities for Target Species

PSSM

Reconstructed Sequence with Confidence Level
recovery rate and MATCH score comparison, we calculated P-values using the Wilcoxon rank sum test. The species tree, which is estimated from whole-genome alignments and thus represents an average across many different loci and genes, is naturally different from gene trees made from a single set of homologous sequences of one gene family. Gene trees can be used as input for maxAlnike, if some sequence information for the target sequence is already available, e.g. for filling gaps. An optimized gene tree should lead to more accurate predictions and thus to a higher recovery rate for the sequence reconstruction. Thus, we measure the possible gain of using gene trees over the species tree. To this end, we estimate a tree for each alignment in both datasets using the fasttree program (Price et al., 2010), remove and reconstruct the target sequences using the estimated tree again and calculate the recovery rates. Since we already know the sequence of the target species beforehand, the gene tree estimated from a particular alignment thus represents the most ‘perfect’ phylogeny for this set of sequences.

If no species tree is available in the first place, the phylogenetic tree needs to be inferred first from other available sequence information, typically from other genes or genomic loci. These trees typically have a different topology and different branch lengths than the reference species tree. While the overall topology might be similar, i.e. major clades can be distinguished, leaves within clades are locally rearranged. To measure the robustness of the maxAlnike predictions to erroneous input trees, we selected all the 479 alignments of minimum length 100 nt that contain all 44 species (average alignment length is 178 nt). From each of these alignments, we inferred a phylogenetic tree using fasttree, resulting in 214 binary trees. Additionally, we created 200 trees each by concatenating 5, 7 and 5 randomly selected alignments (from those 479) and retained the binary trees, giving us 808 trees in total. We then used the program sdist (http://www.daims.de/dfc/sdist.html) to measure the split distance (Gusfield, 1991) of each estimated tree to the reference species tree. The split distance is a measure of the topological similarity between two trees, which we used to broadly classify the tree distortion. However, also pairwise distances between all pairs of species vary between the species tree and the estimated trees. The distances range from 5 to 36 with median 17. We then binned the trees according to their distance in 10 bins (see Supplementary Fig. 4a for the distribution of the bins). For each bin, we copied each dataset (only half of the data in Supplementary Fig. 4a for the distribution of the bins). For each bin, we copied each dataset (only half of the data in Supplementary Table S4 and S5 list all scores for both datasets. For almost all species, we see a significant improvement of the MATCH scores compared with the predicted primers. In addition, we used the melting program (Novère, 2001) to compute the melting temperature between the predicted primers and its complement from the target sequence. If mismatches are present, this ‘real’ \(T_m \) will be lower than the expected \(T_m \) calculated by Primer3. Neighboring mismatches and mismatches at the two extreme positions of the oligo have a higher destabilizing effect than single mismatches (Kwok et al., 1990). However, these mismatch types are not supported in the \(T_m \) calculation by melting and there is also no other publicly available software for download that supports these mismatch types. Therefore, we counted the occurrences of these cases separately and compared the numbers for each of the five reconstruction methods. Especially for phylogenetically distant species, the number of mismatches increases so much, that the \(T_m \) could not be computed by melting in most cases. Thus, we considered only values that are averaged from at least 20 measurements, in order to compare the numbers between the different methods. Note, however, that there is still a bias toward the lower end in the absolute values for the \(T_m \) difference, because all the cases where the \(T_m \) could not be calculated are not included in the average.

3 RESULTS

3.1 Sequence reconstruction

To test the prediction performance of maxAlnike, we compared the MATCH scores of the maxAlnike (ML) and Freq PSSMs for each of the species. Figure 2 shows the median MATCH scores (dataset MZ44-2) of both methods for each species compared with the average tree distance to its closest neighbor. Supplementary Tables S4 and S5 list all scores for both datasets. For almost all species, we see a significant improvement of the MATCH scores when using the ML PSSMs compared with the Freq PSSMs. On the one hand, species with one or more phylogenetically proximal neighbors will have very high nucleotide probabilities at each position and in turn yield a high overall score. On the other hand, ML PSSMs for more distant target species gain most from the inclusion of phylogenetic information: the difference between ML and Freq increases systematically with the average distance to the nearest neighbor. In these species, high probabilities will only be assigned to highly conserved nucleotide. All bony fishes (teleostei) show improved scores, since the sequences from the tetrapoda have much less impact on the ML probabilities than in the Freq PSSMs. Here, the large fraction of mammals in the overall set of species causes a substantial bias. Conversely, the impact of bony fish sequences on
When requiring a nucleotide probability of at least 0.65% for more distant species, while in dataset MZ44-2, the amount of correctly predicted positions is significantly higher in the MZ44-1 tree distance, while used, the recovery rates for all methods drop more with increasing phylogenetic distance, e.g. in the primates, the improvement between with phylogenetically close neighbors, e.g. in the primates, the performance on average (Fig. 3b). The mean recovery rates without the recovery rates of the nearest neighbor sequence (NN) for threshold 0.5, the prediction performance is lower for all mammals compared with the ML PSSMs.

Table 1 shows the total recovery rates in percent across all alignments of both the maxAlike (ML) and the Freq PSSMs for each species compared with the average distance to its phylogenetically closest neighbor. In almost all species, the amount of correctly predicted positions is significantly higher in the maxAlike reconstructions compared with the Freq consensus sequences. As expected, for target species with phylogenetically close neighbors, e.g. in the primates, the improvement between ML and NN is small, but still significant. However, with increasing phylogenetic distance, the difference between the reconstruction rates of both methods becomes bigger. When requiring a nucleotide probability of at least 0.5, the prediction quality increases on average for both ML and Freq and the difference between ML and Freq/NN recovery rates becomes higher for increasingly more distant species. The mean recovery rates across all species are 82.1% for ML, 74.7% for Freq and 73.5% for NN.

In dataset MZ44-1, the ML recovery rates reach a plateau of about 65% for more distant species, while Freq and NN drop down to 55% when using a 50% threshold (Fig. 3a). Here, maxAlike can have up to 10% higher recovery rates than Freq/NN. When no threshold is used, the recovery rates for all methods drop more with increasing tree distance, while ML still has a slight, but yet significantly better performance on average (Fig. 3b). The mean recovery rates without threshold across all species are 79% for ML and 73.7% for Freq. In the MZ44-2 dataset, the prediction performance is lower for all methods compared with MZ44-1. However, the difference between ML and both Freq and NN is slightly higher in MZ44-2. This is due to the lower overall sequence conservation in the alignments, which increases the impact of phylogenetic tree information on the predictions.
Fig. 3. Dataset MZ44-1: recovery rates in percent for sequences reconstructed by maxAlike (ML), frequency-based consensus (Freq) and nearest neighbor (NN). Each point is one species plotted as its average distance to the phylogenetically nearest neighbor. (a) threshold 0.5. (b) no threshold.

As expected, most of the species show an improved recovery rate when using an alignment-specific gene tree compared with the species tree. However, the improvement is very small for most species. The largest increase observed is about 4% (see Supplementary Tables S2 and S3), while the average increase of the recovery rate is 0.78% (threshold 0.5) and 0.98 (no threshold) across all species for MZ44-1. On the other hand, maxAlike reconstruction performance decreases with increasing error levels in the input trees. Figure 4a shows the average change of the total recovery rates in MZ44-1 for sequence reconstructions using trees with increasing bin number, i.e. split distance to the reference species tree (S). For trees in bins 1–5 (containing 70% of all trees), the average change is below 1% for both threshold 0.5/no threshold, but with increasing bin number, the recovery rate drops by maximum 4% on average across all species in bin 10. Supplementary Figure S5 shows the total recovery rates in each bin for all 44 species for dataset MZ44-1. The horizontal bars indicate the recovery rates of Freq (0.5 and no threshold). Supplementary Figure S6 shows the distribution of changes in the recovery rates for all species in each bin. These results show that for trees having an increasingly disturbed topology compared with the reference tree, the maxAlike prediction rate drops to the level of the frequency consensus sequence or even below for some of the species and this occurs on average for trees having a split distance of 23 or higher (bin 7). See Supplementary Figures S8 and S9 for the results of MZ44-2. However, when using enough sequence data for the tree inference in the first place, the estimated trees are sufficiently precise, so that maxAlike can make use of the information in the tree for a better reconstruction performance and so outperforms nearest-neighbor and frequency consensus sequences. Supplementary Figure S4b shows the distribution of the split distances for inferred trees. Even when using only three loci instead of one for the tree construction, there is a significant shift toward a smaller split distance, i.e. a more accurate tree topology. This becomes even more apparent as more sequences are used for the tree inference. The majority of the trees we estimated from randomly chosen loci have a split distance to the species tree of less than 23 (bins 1–6).

Similar results were observed for the datasets containing trees with increasingly distorted branch lengths. For input trees in the first three bins with relative normal errors of 0.05, 0.1 and 0.25 only a very small decrease in the total recovery rates is visible in all species for maxAlike (see Supplementary Figures S11 and S12 for the results of both datasets). When increasing the error to 0.5, the
To measure the impact of an improved sequence reconstruction, primers from sequences with a threshold of 0 from the maxAlike MZ44-1 compared with expected and the template. Figure 6 shows the average difference of the melting temperature depending on mismatches between the primer melting temperature of the primer–template duplex to the actual (n/t) MZ44-1. The algorithm estimates the nucleotide probabilities at 1°C (9%) increase of the average Tm difference in the first 6 bins for MZ44-1. For input trees with large topological errors (bin 10), the Tm difference increases by 2.5°C (30%) on average across all species. These results are similar to the sequence reconstruction, in that the change is moderate for trees in the first 5 bins, but becomes higher with increasingly erroneous trees.

3.2 Primer design for unknown sequences

To measure the impact of an improved sequence reconstruction on the quality of PCR primers, we compared the expected melting temperature of the primer-template duplex to the actual melting temperature depending on mismatches between the primer and the template. Figure 6 shows the average difference of the expected Tm and the Tm of the actually formed duplex for the primers derived from maxAlike and Freq reconstructed sequences (both threshold 0.5) and the nearest neighbor sequence (NN) for dataset MZ44-1. Supplementary Tables S6 and S7 contain the average number of mismatches per primer sequence and the averaged Tm difference in each species for both datasets. For most species, the number of mismatches is much lower for the primers derived from the maxAlike reconstruction using the 0.5 threshold, compared with sequence reconstructions without threshold. Correspondingly, the Tm difference is also smaller. This difference is not as high between the threshold and no threshold reconstructions of the Freq method. In most species, the average Tm difference of the primers from the maxAlike predictions is significantly lower, compared with primers from Freq and NN, in particular when using reconstructed sequences with a threshold of 0.5. Across all species, the average Tm difference is ~26% (~4.6°C) lower with the primers from maxAlike compared with Freq, and ~30% (~5.6°C) lower compared with NN. The higher the phylogenetic distance to the target species, the larger the Tm difference becomes on average for all methods, but also the gap between maxAlike and Freq/NN increases. The Tm difference can be reduced up to 30%. In the closely related primates, the difference between all methods is smaller, with NN being almost as good as maxAlike, while Freq performs worse (~9.5°C higher Tm difference than maxAlike). This observation follows the results from the sequence reconstruction. While NN performs well for target species with close neighbors, Freq is better for more distant target species. maxAlike outperforms both since it takes both the nearest neighbor and all other sequences into account for the reconstruction. Note, however, that the reported averaged Tm differences are biased toward lower values, since the cases of dinucleotide/extreme position mismatches, which would again reduce the melting temperature of the duplex, were not included in the Tm calculation. This bias increases with a higher phylogenetic distance of the target species and correspondingly a higher number of mismatches in the primer sequence. One would expect an ever higher gap between the maxAlike and the Freq/NN Tm differences, since the latter have significantly more of these mismatch types. In some cases, it was not possible for Primer3 to select a primer pair according to our specifications, when using the reconstructed sequences with the 0.5 threshold, because of a high number of unpredicted ('N') nucleotides. This was usually only a problem in short alignments and for species with a high branch length to its nearest neighbor, e.g. Pteropus vampyrus or Danio rerio. A reduced sequence reconstruction performance due to less accurate tree topologies of the input trees translates also into more mismatches in the selected primer sequences and thus in an increased difference between actual and expected primer Tm. Figure 4b shows the average increase of the Tm difference for primers derived from reconstructed sequences across all species using trees with increasing bin number, i.e. split distance to the reference species tree (S). Supplementary Figures S7 and S10 show the distribution of the changes in Tm difference for all species in each bin for both datasets. We observe a maximum 1°C (9%) increase in the average Tm difference in the first 6 bins for MZ44-1. For input trees with large topological errors (bin 10), the Tm difference increases by 2.5°C (30%) on average across all species.

4 DISCUSSION

The maxAlike algorithm estimates the nucleotide probabilities at each sequence position for an unknown sequence in a target species using a combination of homology information from a multiple sequence alignment and a phylogenetic tree. The calculated nucleotide probabilities can be used for homology search or for reconstruction of sequences on which primer design can be made.

In a benchmark dataset, we demonstrated that the inclusion of phylogenetic information in sequence reconstruction significantly improves the reconstruction accuracy compared with two standard approaches. For the comparison to the first standard approach, frequency-based consensus sequences, the maxAlike reconstruction rate is up to 10% higher in most target species, when using a suitable probability threshold. Taking the closest available phylogenetic neighbor (the second standard approach) as a prediction for the target species yields poor results in many cases and is often worse.
than the frequency consensus. Taking the sequence of the closest available phylogenetic neighbor as a prediction for the target species is often worse than the frequency consensus (26 out of 44 species, Table 1). However, the difference to maxAlike is not large for sequence homologs in very proximate species. On the other hand, the sequence reconstruction with maxAlike also improves when homologs of closely related taxa are available. In those cases, the reconstruction rate can reach as much as 99% accuracy, and is better than both the nearest neighbor and frequency consensus sequences. The better the reconstruction rate is, the better the precision of homology search programs becomes, e.g. when using PSSMs. Additionally, maxAlike provides information about highly variable sites through the estimation of mutation rates for each position. These positions could therefore be easily excluded from the homology search or primer design. When using a nucleotide probability threshold in the sequence reconstruction, the primers generated from these reconstructed sequences have significantly less mismatches to their target complement, compared with both the frequency consensus sequences as well as the nearest neighbor sequences. From that follows a reduced deviation from the expected melting temperature of the primer–template duplex, which increases the chance of a successful PCR. In some cases, e.g. for short sequences or distant target species, a suitable primer pair could not be found, because not enough positions exceed the chosen probability threshold. To compensate for this, the threshold can successively be lowered or the length of the primers could be reduced. Compared with primer design using the two standard methods, frequency consensus and nearest neighbor, primers designed from sequences reconstructed by maxAlike on average exhibit a reduction of the difference between the expected and real melting temperatures by 26%. As expected in the regime of short evolutionary distances, we observe that the nearest neighbor method is significantly more accurate than the frequency-based methods. Nevertheless, maxAlike yields slightly better results. In the regime of large distances, where the overall accuracy of all methods drop, the frequency-based approach outperforms the nearest neighbor approach. Again maxAlike performs best.

Our results show, that a general species tree already yields good reconstruction results, but a slightly higher reconstruction rate can still be obtained by using an optimized gene tree for the particular species family under study. If a gene tree is available, e.g. for filling gaps in an otherwise complete sequence, the gene tree should be preferred in order to maximize the number of correctly predicted nucleotides. However, the exact position of the target species in a certain gene tree is usually unknown, and the reconstruction of the homolog is based on a general species tree or a tree inferred from other genomic loci. Ideally, this tree is constructed by all available sequence data from the target species, combined with the homologs of these sequences in other closely related organisms. Even if no general species tree is available, we observe that the prediction performance of maxAlike is robust against the variations in the input tree generated by randomly selecting genomic loci for estimating the tree. Furthermore, we demonstrated that more accurate tree topologies can easily be obtained by a small increase in the number of loci that are used for the tree inference. The more accurate the tree topology is, the more information from the tree can be used for the sequence reconstruction by maxAlike and the higher the prediction performance becomes, e.g. the accuracy of the sequence reconstruction only decreases by 1% on average across all species for 70% of the input trees in MEG4.1. The general robustness against erroneous tree topologies in the sequence reconstruction translates to the design of PCR primers, which in turn leads to more accurately predicted primer sequences compared with the other methods. The prediction accuracy has also been shown to be robust against distortions in the branch lengths of the input tree. Of course, maxAlike can also be used with phylogenetic trees from databases, such as treebase (Piel et al., 2003) or TreeFam (Li et al., 2006).

Future directions include taking RNA structure explicitly into account. Several studies showed that potential ncRNAs in genomic sequence have altered their primary sequence while maintaining their secondary structure and the sequence-based alignments are...
We thank Christian Anthon for assistance with the web server and

REFERENCES

Acknowledgements

Funding: Peter Menzel is supported by the Danish Research Council for Technology and Production through the Danish Research School in Biotechnology. This work was supported by the Danish Center for Scientific Computation and the Danish Strategic Research Council.

Conflict of Interest: none declared.

References

