Normalization of real-time RT PCR data using an external RNA control

Stian Ellefsen

Associate Professor
Lillehammer University College
stian.ellefsen@hil.no

Improved normalization of real-time reverse transcriptase polymerase chain reaction data using an external RNA control

Stian Ellefsen a,*, Kåre-Olav Stensløkken b, Guro K. Sandvik a, Tom A. Kristensen c, Göran E. Nilsson a

Anal Biochem (2008), 376, p 83-93
Introduction

A vertebrate with an extraordinary advantage:

it produces ethanol!

This enables survival without oxygen (anoxia)
Introduction
Introduction

What has anoxia tolerance to do with normalization of real-time RT PCR data?
a balanced ATP-budget is a prerequisite for anoxic survival

1) ATP production = ATP consumption

2) ATP production = ATP consumption

3) ATP production = ATP consumption
Anoxia is an extreme physiological challenge, and "everything" must be expected to change.
Aim of project: to develop a procedure for accurate assessment of gene expression in anoxic crucian carp
This is the first study to introduce an external RNA control gene prior to RNA extraction on a “per unit weight of tissue” basis, and to use it for normalization of real time RT PCR data.

Material and Methods

\[\text{mw2060} \]
\[\text{mw} = \text{Microcystis cf. wessenbergi} \]
\[2060 = \text{number of nucleotides} \]

External RNA control gene: an *in vitro* synthesized mRNA strand that does not have analogs in the experimental system of interest.
Standard curve

- using one batch of mw2060
- using one pool of homogenized brains

Fig. 1

Ellefsen et al. (2008)
Materials and Methods

Anoxia exposures

- Two anoxia experiments:
 1. 8 °C
 2. 13 °C

- Four oxygen regimes in each experiment:
 1. *Normoxia 7 days* (*N7*)
 2. *Anoxia 1 day* (*A1*)
 3. *Anoxia 7 days* (*A7*)
 4. *Anoxia 7 days/Normoxia 3 or 7 days* (*A7N3/A7N7*)

- Brain and heart were sampled for real-time RT PCR analyses
Results

Internal RNA control genes in the crucian carp brain

mw2060-normalized data:

Fig. 2

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ºC</td>
<td>β-actin, Cyclophilin A, GAPDH</td>
</tr>
<tr>
<td>13 ºC</td>
<td>β-actin, Cyclophilin A, GAPDH</td>
</tr>
</tbody>
</table>

Ellefsen et al. (2008)
Results

Internal RNA control genes in the crucian carp heart

mw2060-normalized data:

Fig. 3

8 ºC

NB!

N7 vs. A1

13 ºC

Ellenssen et al. (2008)
Results

Internal RNA control genes in the crucian carp heart

Non-normalized data:

Fig. 4

NB!
N7 vs. A1

Ellefsen et al. (2008)
Results

"Internal RNA control genes in the crucian carp heart"

Comparing mw2060-normalized and non-normalized data:

Ellefsen et al. (2008)
Results

Normalization of target gene expression in crucian carp heart: **HSP30**

Fig. 5

<table>
<thead>
<tr>
<th>Normalization:</th>
<th>mw2060</th>
<th>β-actin</th>
<th>geNorm</th>
</tr>
</thead>
</table>

8 °C

- N7 vs. A1

13 °C

- N7 vs. A1

NB!

Ellefsen et al. (2008)
Results

Normalization of target gene expression in crucian carp heart: **HSC70**

Normalization:

<table>
<thead>
<tr>
<th></th>
<th>mw2060</th>
<th>β-actin</th>
<th>geNorm</th>
</tr>
</thead>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HSC70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N7</td>
<td>A1</td>
<td>A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A7N7</td>
</tr>
<tr>
<td></td>
<td>13 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N7</td>
<td>A1</td>
<td>A7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A7N3</td>
</tr>
</tbody>
</table>

NB!

N7 vs. A1

Fig. 6

Ellefsen et al. (2008)
Observed changes in internal RNA control gene expression had large consequences for target gene normalization.
Results

Evaluation

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• standard curve</td>
<td>• batch-to-batch variation</td>
</tr>
<tr>
<td>• intra-experimental reproducibility (low Coeff. of var.)</td>
<td>• complete cell lysis?</td>
</tr>
<tr>
<td>• inter-experimental reproducibility (similar expression profiles between experiments)</td>
<td></td>
</tr>
<tr>
<td>• non-normalized data supports normalized data</td>
<td></td>
</tr>
<tr>
<td>• changes in mw2060-normalized gene expression could not be explained from changes in RNA yields</td>
<td></td>
</tr>
</tbody>
</table>

Our external RNA control gene approach seems to enable accurate normalization of real-time RT PCR data.
Expression of genes involved in excitatory neurotransmission in anoxic crucian carp (Carassius carassius) brain

Stian Ellefsen,1,2 Guro K. Sandvik,1 Helene K. Larsen,1 Kåre-Olav Stensløkken,3 Dag Are S. Hov,1 Tom A. Kristensen,4 and Göran E. Nilsson1

Physiol Genomics 35: 5–17, 2008

Expression of genes involved in GABAergic neurotransmission in anoxic crucian carp brain (Carassius carassius)

Stian Ellefsen,1,2 Kåre-Olav Stensløkken,3 Cathrine E. Fagernes,1 Tom A. Kristensen,4 and Göran E. Nilsson1

Physiol Genomics 36: 61-68, 2009

Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius)

Kåre-Olav Stensløkken,1,2 Stian Ellefsen,3,4 Jonathan A. W. Stecyk,3 Mai Britt Dahl,2 Göran E. Nilsson,3 and Jarle Vaage1

Contributors:

Göran E. Nilsson, Prof. PhD
Kåre-Olav Stensløkken, PhD
Guro K. Sandvik, MSc
Tom A. Kristensen, Prof. PhD

Tove K. Larsen, MSc
Ave Tooming, PhD
Vilborg Matre, PhD
Jørund Sollid, PhD

The project was financed by the Research Council of Norway