Sensitive and high throughput multiplexed immunoassays for biomarker discovery in biobanked samples using proximity ligation assays and qPCR

Simon Fredriksson, PhD
CSO, Olink Bioscience, Uppsala Sweden
Simple assay procedure

1. Incubate sample with proximity probes
 30-60 min

2. Add, connector, ligase and PCR components
 <5 min

3. Perform quantitative PCR
 60-120 min

The first proximity ligation assay, PDGF-BB

Fredriksson Nature Biotech 2002
Diagnostic challenge in early cancer detection (screening)
- detection specificity (low false positive rate)
- detection sensitivity (low false negative rate)

Solution...
- the use of multiple biomarkers combined in a panel can improve diagnostic accuracy

Research challenge in finding more biomarkers and biomarker panels
- Limited supply of precious biobanked samples
 - Especially with repeat analyses
- Large number of candidate biomarkers
 - Tens or even hundreds

Solution...
- high throughput and multiplexed protein detection tools.
Multiplexed in solution PLA
- a tool for high throughput biomarker research

Features of in solution PLA using antibodies
- high sensitivity
- low sample consumption
- wide dynamic range

Detection of VEGF

Fredriksson et al Nature Methods 2007
Multiplexed in solution PLA

Dual recognition specificity
4 multiplex panels of 7-plex assays

monoclonal or affinity purified polyclonal antibodies

<table>
<thead>
<tr>
<th>sequence tag</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IGF-2</td>
<td>YKL-40</td>
<td>CA-125</td>
<td>PDGF-BB</td>
<td>Mesothelin</td>
<td>EpCam</td>
<td>CEA</td>
</tr>
<tr>
<td></td>
<td>CTGF</td>
<td>Osteopontin</td>
<td>CA-125</td>
<td>PDGF-BB</td>
<td>CA19-9</td>
<td>EGFR</td>
<td>CA15-3</td>
</tr>
<tr>
<td></td>
<td>VEGF</td>
<td>MIF</td>
<td>CA-125</td>
<td>PDGF-BB</td>
<td>IL1-alpha</td>
<td>IL-7</td>
<td>TNFalpha</td>
</tr>
<tr>
<td></td>
<td>ADAM8</td>
<td>SPLI</td>
<td>CaPaA</td>
<td>PDGF-BB</td>
<td>Galectin-1</td>
<td>Erbb2</td>
<td></td>
</tr>
</tbody>
</table>

Pilot biomarker study in pancreatic cancer
A pilot biomarker study in ovarian cancer

Ovarian cancer samples, reproducibility and assay modularity

Cases, RED
Controls, Blue

Luminex data from Scholler et al
PROACTIVE EU-funded technology development and biomarker project

Development of a high throughput plasma biomarker research pipeline
- To profile 180 putative plasma biomarkers
- Pilot project in colorectal cancer detection
- Multiplexed and homogeneus proximity ligation
- High throughput qPCR readout

- Largest ever effort to find new low abundance cancer biomarkers in one and the same biobanked sample collection
- Enabled by low sample consumption of PLA and easy assay development in multiplex (no antibody cross-reactivity)
- €3 million in funding from the European Union for a three year effort
- Will establish a research and data analysis infrastructure for use in other disease areas as well

PROACTIVE partners

Partners

Assay development and reagents : Olink and Innova Biosciences
Statistics : Uppsala University, Integromics
Diagnostics expertise : Fujirebio Diagnostics
Samples and clinical expertise : Copenhagen University
In situ proximity ligation

- Localized detection of protein interactions in fixed cells and tissue

- Visualization of signal transduction by localized single molecule detection of protein interactions.

- Objective quantification by counting bright fluorescent spots in each single cell.

in situ proximity ligation assay (PLA) by Duolink™

Her2-Her3 interaction in breast cancer tissue

Single molecule counting

© OLINK 2009
In situ PLA-Duolink

Incubate with target specific primary antibodies from two different species

In situ PLA-Duolink

Add PLA probes PLUS and MINUS
In situ PLA-Duolink

Hybridize connector oligos

In situ PLA-Duolink

Ligation to form a complete DNA circle
In situ PLA-Duolink

Template for rolling circle amplification
In situ PLA-Duolink

Hybridization of detection probes

SMAD complex formation after TGF-β stimulation

Images from microscope

Images from BlobFinder software

Untreated MEF cells | TGF-β treated MEF cells

In collaboration with Katerina Pandoli, Uppsala University
Relative quantification of interactions using image analysis freeware BlobFinder

Disruption of protein-protein interaction

c-Myc/Max interaction in fibroblasts

Soderberg et al. Nat Methods, 2006
A novel complex between VEGF-R2 and PDGF-Rβ, analyzed using Co-IP and western blotting

Dr. J. Greenberg, Dept of Surgery, Prof. D. Cheresh, et al, Moores Cancer Center, UCSD
Nature advance online publi. 9 Nov. 2008, doi:10.1038/nature07424

Confirmation of the VEGF-R2 and PDGF-Rβ complex using Duolink

Dr. J. Greenberg, Dept of Surgery, Prof. D. Cheresh, et al, Moores Cancer Center, UCSD
Nature advance online publi. 9 Nov. 2008, doi:10.1038/nature07424
Options for implementing *in situ* PLA

Duolink research reagents

Available from our webshop and distributors
www.olink.com

Cambridge Bioscience (United Kingdom)

Contract research projects

Performed at Olink Bioscience

Assay development and sample analysis service

Developed assays can be transferred to the ordering lab

Benefits of using *in situ* PLA and Duolink:

- Highly specific target recognition
 - dual recognition assay design

- A prominent fluorescent spot
 - digital counting, as opposed to measuring signal intensity

- No need for overexpression of genetically modified proteins

- Protein interaction quantification in tissue samples and tissue microarrays
Acknowledgements

Uppsala University
- Ulf Landegren
- Ola Söderberg
- Katerina Pardali
- Malin Jarvius
- Irene Weibrecht
- Jonas Jarvius
- KJ Leuchowius
- Mats Nilsson
- Anders Alderborn

Olink Bioscience, Sweden
- Mats Gullberg
- Gabriella Edfeldt
- Göran Holmqvist
- Ann-Catrin Andersson
- Eva Göhl
- Andrea Reyes
- Erik Nyström
- Daniel Ekman
- Fredrik Hjelm

Center for Image Analysis
- Carolina Wähly
- Amin Allalou

Olink Bioscience, US
- Ylva Elias, San Diego

Stanford University
- Ron Davis, Albert Koong, Rob Tibshirani labs

ENLIGHT FP6, PROACTIVE FP7

Thank you!

www.olink.com