The use of transcriptomics for biomarker development to trace anabolic hormone functions

Irmgard Riedmaier, Christiane Becker, Michael W. Pfaffl, Heinrich H.D. Meyer

Physiology Weihenstephan, Technical University of Munich

qPCR 2009
Outline

• Anabolic Steroid Hormones and their use in animal husbandry
• Gene Expression Biomarkers
• Study design
• Results
• Conclusions
• Perspectives
Anabolic Steroid Hormones in animal husbandry

- Important for establishment of muscle tissue
- Enhance body protein accretion
- Mobilization of fat stores
- Enhanced feed efficiency and reduced costs
- Use and misuse as growth promoters in animal husbandry
Anabolic Steroid Hormones in animal husbandry

- Use of specific anabolic agents is licenced in Canada, USA, Australia, South Africa...
- Since 1988: use of anabolic agents is prohibited in the EU (Directive 88/146/EEC)
- Misuse of anabolics ⇒ permanent control necessary
- Detection of hormone residues using chromatography in combination with mass spectrometry
- **Problem:** Development of new xenobiotics and administration of hormone cocktails ⇒ New sensitive test systems required
Gene Expression Biomarker

- Detection of physiological changes caused by treatment with anabolic agents
 ⇒ Development of a biomarker pattern based on changes in gene expression
- Activated steroid hormone receptors act as transcription factors
 ⇒ direct influence on gene expression
Study design

- 18 Nguni heifers (9 treated, 9 untreated)
- Treatment with Revalor H by implantation for 42 days
 - 140 mg Trenbolone acetate, 14 mg estradiol
 - Implant is placed under the skin on the posterior aspect of the ear
- Tissues for biomarker screening: liver, blood, vaginal smear (containing vaginal epithelial cells)
- Sampling of blood and vaginal smear at day 0, 2, 16 and 39 of treatment
- Liver samples obtained at slaughter (day 42)
Procedure

- Selection of target genes by screening the actual literature for steroidal effects on analyzed tissues
- Quantification of gene expression via qRT-PCR
- Normalization with reference genes
- Determination of significant regulations between treatment and control using the t-test ($p<0.05$)
- Principle Components Analysis (PCA) and Hierarchical Cluster Analysis using Genex Pro. Ver. 4.3.8 (MultiD Analyses AB, Gothenburg, Sweden)
Liver samples: 5 regulated genes

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
Liver samples: 5 regulated genes

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
Blood: 11 regulated genes
Blood: 11 regulated genes

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
Vaginal smear: 27 measured genes

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
control 9
control 8
control 2
control 7
control 3
control 4
control 5
control 1
treatment 9
treatment 3
treatment 1
treatment 8
treatment 7
treatment 5
treatment 2
circle
control 6

treatment 6

treatment 4

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
Vaginal smear: 27 measured genes

Genex Ver. 4.3.8, MultiD Analyses AB, Gothenburg, Sweden
Conclusions

- Potential of transcriptomics for the development of a biomarker pattern to screen for the abuse of anabolic agents
- The more regulated genes the better results using PCA or Hierarchical Clustering
- Tissues that are directly influenced by steroid hormones are better for the development of gene expression biomarkers
Perspectives

• More trials with more animals and other anabolic agents
• Large number of untreated control samples
• Combination of transcriptomics with other „omic“ technologies, like proteomics or metabolomics
Thank you for your attention!