Contents

Contributors 00
Abbreviations 00
Preface 00

1 An introduction to real-time PCR 00
 Gregory L. Shipley
 1.1 Introduction 00
 1.2 A brief history of nucleic acid detection and quantification 00
 1.3 Real-time quantitative PCR: a definition 00
 1.4 Practical and theoretical principles underlying real-time PCR 00
 1.5 Real-time PCR instrumentation – an overview 00
 1.6 Detection chemistries used in real-time PCR 00
 1.7 Performing a real-time RT-PCR experiment 00
 1.8 What lies ahead 00
References 00
Protocol 1.1 00
Protocol 1.2 00
Protocol 1.3 00
Protocol 1.4 00
Protocol 1.5 00

2 Data analysis and reporting 00
 Pamela Scott Adams
 2.1 Introduction 00
 2.2 Standard curves 00
 2.3 Preliminary assay analysis 00
 2.3.1 Amplification curves 00
 2.3.2 Baseline 00
 2.3.3 Threshold 00
 2.3.4 Proper controls 00
 2.3.5 Experimental samples 00
 2.3.6 Quantifying data 00
 2.4 Data reporting and statistics 00
References 00

3 Relative quantification 00
 Michael W. Pfaffl
 3.1 Introduction 00
 3.2 Relative quantification: The quantification is relative to what? 00
3.3 Normalization
3.4 Mathematical models
3.5 Real-time qPCR amplification efficiency
3.6 Determination of the amplification rate
 3.6.1 Dilution method
 3.6.2 Fluorescence increase in exponential phase
 3.6.3 Sigmoidal or logistic curve fit
 3.6.4 Efficiency calculation in the exponential phase using multiple models
3.7 What is the right crossing point to determine?
3.8 Relative quantification data analysis and software applications
 3.8.1 LightCycler Relative Quantification Software
 3.8.2 REST
 3.8.3 Q-Gene
 3.8.4 qBASE
 3.8.5 SoFAR
 3.8.6 Dart-PCR
3.9 Conclusion
References

4 Normalization
Jim Huggett, Keertan Dheda and Stephen A. Bustin
4.1 Introduction
4.2 General error and directional shift
4.3 Methods of normalization
 4.3.1 Sample size
4.4 Conclusion
References

5 High-throughput primer and probe design
Xiaowei Wang and Brian Seed
5.1 Primer and probe design guidelines
 5.1.1 Primer specificity
 5.1.2 Primer length
 5.1.3 Primer GC content
 5.1.4 Primer 3’ end stability
 5.1.5 Primer sequence complexity
 5.1.6 Primer melting temperature
 5.1.7 Primer location in the sequence
 5.1.8 Amplicon size
 5.1.9 Cross-exon boundary
 5.1.10 Primer and template sequence secondary structures
 5.1.11 TaqMan probe design
 5.1.12 Molecular beacon probe design
5.2 PrimerBank – an online real-time PCR primer database
 5.2.1 Primer design algorithm
 5.2.2 PrimerBank
 5.2.3 Experimental validation of the primer design
5.3 Experimental protocol using PrimerBank primers
 5.3.1 Reverse transcription (RT)
5.3.2 Real-time PCR 00
5.3.3 Troubleshooting 00
5.4 Web resources about primer and probe design 00
5.4.1 Real-time PCR primer and probe databases 00
5.4.2 Primer and probe design tools 00
5.4.3 Other useful web sites 00
References 00

6 Quantitative analysis of ocular gene expression 00
Stuart N. Peirson
6.1 Introduction 00
6.1.1 Gene expression in the eye 00
6.1.2 Problems associated with ocular gene expression 00
6.2 Relative quantification 00
6.2.1 The R_n method 00
6.2.2 Kinetic approaches to qPCR 00
6.2.3 Accurate normalization 00
6.3 Assay considerations 00
6.4 Conclusions 00
References 00

7 Quantitative gene expression by Real-Time PCR: A complete protocol 00
Thomas D. Schmittgen
7.1 Introduction 00
7.2 Materials 00
7.2.1 Reagents and consumables 00
7.2.2 Equipment 00
7.3 Procedure 00
7.3.1 Sample preparation 00
7.3.2 Isolation of RNA from cultured cells or blood 00
7.3.3 Isolation of RNA from whole tissue 00
7.3.4 RNA quantification 00
7.3.5 DNase treatment 00
7.3.6 cDNA synthesis 00
7.3.7 SYBR® green 00
7.3.8 Primer design 00
7.3.9 Real-time PCR 00
7.3.10 Data analysis 00
7.3.11 Calculation of fold-change in gene expression 00
7.4 Troubleshooting 00
7.5 Critical steps 00
7.6 Comments 00
References 00

8 Real-time PCR using SYBR® Green 00
Frederique Ponchel
8.1 Introduction 00
8.2 SYBR® Green chemistry 00
8.3 Primer design 00
8.3.1 Step by step primer design: β-actin for a cDNA quantification assay 00
8.4 Primer optimization
8.4.1 Absolute quantification of gene expression
8.4.2 Relative quantification of gene expression
8.4.3 Relative quantification of different gene modifications
8.5 Melting curve analysis
8.6 Quantification of gene modification
8.6.1 DNA quantification
8.6.2 Gene amplification
8.6.3 Gene deletion
8.6.4 Gene rearrangement
8.6.5 Gene copy number
8.7 RNA quantification
8.7.1 RNA extraction
8.7.2 cDNA preparation
8.7.3 Reference gene validation
8.7.4 Splice variants and splicing machinery
8.7.5 Promoter switch
8.8 Allelic discrimination
8.9 Chromatin immunoprecipitation
8.10 Conclusion

9 High-resolution melting analysis for scanning and genotyping

9.1 Introduction
9.2 High-resolution instrumentation
9.2.1 The HR-1 instrument
9.2.2 The LightScanner instrument
9.2.3 The LightCycler 480 instrument
9.3 Saturating dyes
9.3.1 LCGreen dyes
9.4 Mutation scanning
9.4.1 PCR protocols for scanning
9.4.2 Principles of scanning by melting
9.4.3 Software tools for heterozygote identification
9.4.4 Scanning for homozygous variants
9.5 Amplicon genotyping
9.6 Unlabeled probe genotyping
9.6.1 PCR protocols for unlabeled probe genotyping
9.6.2 Instrumentation for unlabeled probe genotyping
9.6.3 Simultaneous genotyping and scanning
9.7 Simplification of genotyping and mutation scanning

10 Quantitative analyses of DNA methylation

10.1 Introduction
10.2 MDR1 (ABCB1, Gene ID 5243) as a primary target locus
10 Primer design
- 10.3 Primer design
- 10.4 Data evaluation: I. Assay-to-assay variability
- 10.5 Data evaluation: II. MDRI CpG methylation as quantified by qPCR
- 10.6 Expanded analyses

References
- Protocol 10.1

11 Mitochondrial DNA analysis
Steve E. Durham and Patrick F. Chinnery

11.1 Introduction

11.2 Mitochondrial genetics
- 11.2.1 mtDNA mutations
- 11.2.2 mtDNA copy number and heteroplasmy
- 11.2.3 The threshold effect
- 11.2.4 Mutation rate of mtDNA
- 11.2.5 Mitochondrial DNA, aging and disease

11.3 Mitochondrial DNA analysis by real-time PCR
- 11.3.1 Detection method
- 11.3.2 Oligonucleotide fluorescent probes
- 11.3.3 DNA binding dyes
- 11.3.4 Considerations when designing a mtDNA real-time assay

11.4 Discussion

References

12 Real-time immuno-PCR
Kristina Lind and Mikael Kubista

12.1 Introduction
- 12.1.1 Immunoassays
- 12.1.2 Immuno-PCR

12.2 Assemblages for real-time immuno-PCR
- 12.2.1 Attaching capture antibody
- 12.2.2 Labeling detection antibody with DNA

12.3 Real-time immuno-PCR details
- 12.3.1 Reaction containers and instruments
- 12.3.2 DNA-label
- 12.3.3 Blocking agents
- 12.3.4 Controls
- 12.3.5 Optimizing concentrations

References
- Protocol 12.1

13 Clinical microbiology
Burcu Cakilci and Mehmet Gunduz

13.1 Introduction
- 13.1.1 Importance of detection and quantification in microbiology
- 13.1.2 From traditional methods to real-time PCR in microbiology

13.2 Real-time PCR studies in microbiology
- 13.2.1 Basics for microbial quantitation
- 13.2.2 Bacteria
- 13.2.3 Fungi and parasites

References
14 Clinical virology

David M. Whiley and Theo P. Sloots

14.1 Introduction
14.2 Qualitative real-time PCR for viral disease
 14.2.1 Sequence variation and assay performance
14.3 Virus typing using sequence-specific probes
 14.3.1 Hybridization probes
 14.3.2 Additional comments
14.4 Quantification of viral load
 14.4.1 The use of an internal control in clinical molecular virology
 14.4.2 Impact of target sequence variation on qPCR
 14.4.3 Additional comments
14.5 Conclusions

15 Solid organ transplant monitoring

Omaima M. Sabek

15.1 Introduction
15.2 Real-time quantitative PCR
15.3 RNA normalization
15.4 Immunologic monitoring in solid organ transplantation
15.5 Pharmacogenetics in solid organ transplantation
15.6 Cytokine polymorphism analysis
 15.6.1 Recipient and donor polymorphisms
 15.6.2 Ethnicity and cytokine gene polymorphism
15.7 Viral infection in transplant patients

16 Real-time PCR applications in hematology

Anne M. Sproul

16.1 Specimens
16.2 Specimen quality
16.3 Template preparation
16.4 DNA isolation
16.5 PCR inhibition
16.6 RNA isolation
16.7 cDNA synthesis
16.8 Relative versus absolute quantitation
16.9 Control genes for MRD in leukemia
16.10 Controls for real-time PCR
16.11 Assay design
16.12 Laboratory precautions
17 Real-time PCR for prenatal diagnosis of monogenic diseases caused by single nucleotide changes

The example of the hemoglobinopathies
Joanne Traeger-Synodinos, Christina Vrettou and Emmanuel Kanavakis

17.1 Introduction to prenatal diagnosis (PND) in clinical genetics

17.2 Classic mutation detection methods for prenatal diagnosis of monogenic diseases and best practice guidelines

17.2.1 Classic mutation detection methods

17.2.2 Best practice guidelines for prenatal diagnosis

17.3 Sources of fetal samples for prenatal diagnosis

17.4 Real-time PCR protocols for PND and PGD applied to the hemoglobinopathies background and design of protocols

17.4.1 Real-time PCR and allele discrimination using the LightCycler™ (system 1.0 or 1.5)

17.4.2 Molecular basis of β-hemoglobinopathies

17.4.3 Principles behind design of LightCycler™ probe sets and assays in the β-globin gene (appropriate for Systems 1.0 and 1.5)

17.4.4 Additional considerations in design of single-cell genotyping for PGD using real-time PCR

17.4.5 Potential advantages of real-time PCR protocols for PND and PGD

References

Protocols for preparing fetal DNA samples