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Discovering the gene expression signature associated with a cellular state is one of the basic
quests in majority of biological studies. For most of the clinical and cellular manifestations,
these molecular differences may be exhibited across multiple layers of gene regulation like
genomic variations, gene expression, protein translation and post-translational modifications.
These system wide variations are dynamic in nature and their crosstalk is overwhelmingly
complex, thus analyzing them separately may not be very informative. This necessitates the
integrative analysis of such multiple layers of information to understand the interplay of the
individual components of the biological system. Recent developments in high throughput RNA
sequencing and mass spectrometric (MS) technologies to probe transcripts and proteins made
these as preferred methods for understanding global gene regulation. Subsequently, improve-
ments in “big-data” analysis techniques enable novel conclusions to be drawn from integrative
transcriptomic-proteomic analysis. The unified analyses of both these data types have been
rewarding for several biological objectives like improving genome annotation, predicting RNA-
protein quantities, deciphering gene regulations, discovering disease markers and drug targets.
There are different ways in which transcriptomics and proteomics data can be integrated; each
aiming for different research objectives. Here, we review various studies, approaches and com-
putational tools targeted for integrative analysis of these two high-throughput omics methods.
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technologies like RNA sequencing and shotgun proteomics

Gene expression profiles, either in the form of transcriptome
and/or proteome, provide means to explore and determine
underlying molecular and cellular processes. The last decade
has brought about several key advances in high-throughput
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that have now enabled probing transcript and protein ex-
pression at an unprecedented depth and coverage [1]. Due to
the reduced time and cost, these methods have fast gained
broad applicability in the study of various biological systems,
ranging from pathogens to embryonic development and can-
cer [2]. Now, the power of high-throughput techniques can
be leveraged to make inferences at the genome-wide scale
rather than quantifying the expression of a few genes using
the conventional experimental methods [3].

While the genome remains nearly static for an organism,
its transcriptome and proteome rapidly change, albeit in a
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tightly regulated manner in response to different environ-
mental perturbations and growth conditions. This dynamicity
of a cell or tissue can be estimated by measuring its transcrip-
tome (expressed portion of the genome) and/or proteome
(expressed protein set from genome). However, another or-
der of dynamicity is added by post-transcriptional and post-
translational regulations of gene expression. These include,
but are not limited to, alternative splicing [4] and editing of
expressed transcripts and post-translational addition of cova-
lent modifications [5] to proteins. Thus, several isoforms or
proteoforms with distinct structural and functional attributes
may originate from a given gene. Further, the crosstalk be-
tween these different biological macro-molecules presents a
stupendous number of possibilities in which molecular pat-
terns can be reflected [6]. Deciphering these gene expression
patterns specifically associated with a given biological state
is fundamental to understanding cellular processes and dis-
eases.

Sustained developments in the nucleotide sequencing
technology, especially RNA-sequencing, has resulted in an
explosive growth in the number and quality of transcriptome
sequencing for various tissues and diseases [7]. It enables
profiling of the slightest changes in gene expression between
two conditions and thus, is rich in information. Besides the
expression profiling of annotated genes, it may also reveal
alternate transcriptional start site (T'SS) usage, novel splice
variants, intergenic transcripts, expression quantitative trait
loci (eQTLs) [8] and fusion transcripts; all of which may have
functional implications in the cellular context [9]. Transcrip-
tome sequencing has been immensely beneficial in finding
key markers of various human cancers. It has also been im-
mensely useful in discovering potential drug targets when
integrated with epigenetic marks like DNA methylation and
histone modification. [10].

Recent advances in instrumentation and analytical meth-
ods associated with mass spectrometry (MS)-based proteome
profiling makes it a powerful technique for probing gene ex-
pression changes at the protein level [11,12]. The major goal
of proteomics is to build the complete proteome map of a
species which must include precise cellular localization of
each protein, delineate signaling pathways and describe their
regulatory PTMs [13]. Combined with liquid chromatogra-
phy (LC), tandem mass spectrometry (MS/MS) also provides
a sensitive method to capture protein quantity differences
[14, 15]. This unique ability of proteomics to discover the
post-translational modifications and their quantities may al-
low segregation of active proteoforms from the inactive ones
and thus, may facilitate drawing accurate functional infer-
ences from gene expression data.

Although, both transcriptome and proteome profiling
methods are rich in biological information, these are limited
in their abilities to provide a comprehensive perspective of the
system when analyzed individually. Despite high sensitivity,
estimation of transcript expression is not sufficient to pro-
vide a picture of the true biological state, as mRNA profiling
does not capture regulatory processes or post-transcriptional
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modifications that might affect the amount of active pro-
tein [16]. Similarly, proteomics lacks the sensitivity to detect
low abundant proteins and is limited in its ability to iden-
tify novel proteoforms resulting from alternative splicing or
SNPs. However, integrative analysis of these “omics” datasets
may present complementary information towards drawing
more informative conclusions.

In recent years, researchers are integrating knowledge
from transcriptomic and proteomic data to gain meaningful
insights. By integrating expressed transcript information in
proteomics data analysis, various discoveries like novel cod-
ing genes, alternate translation initiation sites (TIS), splice
variants, single amino acid polymorphism, etc., can be made
[17]. Similarly, integrative transcriptomic-proteomic analysis
highlighted a poor correlation between the quantities of these
two macromolecules indicative of a complex regulatory mech-
anism controlling expression both at the RNA and the protein
levels. In the following sections, we have reviewed the notable
studies and approaches that have used integrative transcrip-
tomic and proteomic analyses. Broadly, we have summarized
these approaches into the following categories:

(i) Transcriptome as atemplate for proteomics data analysis.
(ii) Integrative analyses to decipher gene expression and reg-
ulation.
(iii) Clinical applications of integrative transcriptome and
proteome analyses.

2 Transcriptome as a template
for proteomics data analysis

A regular shotgun proteomics experiment utilizes a mass
spectrometer to acquire the mass to charge ratios of peptides
and their fragments resulting in a unique mass spectrum
for each peptide [15]. These tandem mass spectra (MS/MS)
are then searched against a database of probable protein se-
quences so as to identify the peptides and proteins expressed
in that sample [18]. Alternate approaches are of sequencing
peptides de novo from the MS/MS spectra. Although there
have been tremendous improvements in de novo peptide dis-
covery software like PEAKS [19], etc., these still have a re-
markably reduced sensitivity compared to database search
method and are also suspected of high false positives [20].
Thus, database search approach is the preferred method of
peptide discovery from spectral data. However, the drawback
of this method is its dependency on the database. Peptide
identification algorithms like MASCOT [21], MassWiz [22],
etc., can only identify peptides present in the search database.
This necessitates that proteomics search databases should be
complete and accurate. On the contrary, most of the proteome
databases used for spectral searches are the in silico annotated
proteomes, which generally contain errors and lacks com-
pleteness [23, 24]. Additionally, tissue and individual-specific
proteome variations attributable to SNPs and splice variants
are not represented in the annotated reference proteome.
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Figure 1. Integrating the mRNA sequencing and peptide sequencing for proteogenomic discovery and genome annotation.

Proteogenomics is a new direction of research where pro-
teomics data is utilized to annotate genes in the genome
[25,26]. However, for this task, proteogenomic methods rely
on custom genomic databases, other than the annotated refer-
ence proteome, to discover novel peptides indicative of novel
translated regions [27]. While genomic databases such as six
frame translated genome or ab initio predicted genes may
include majority of the novel translation possibilities for a
prokaryotic genome [28-30], it would have a limited rep-
resentation of protein isoforms possible from a eukaryotic
genome [31]. Proteomic diversity of a eukaryote is largely
attributed to alternative mRNA splicing [4]. The number of
possible splice variants and resulting protein isoforms, rise
exponentially with the number of the exons in a gene. For
complex organisms like human, the number of exons for
a few genes is more than a hundred. Including all these
possible exon combinations in the search database would
increase the search space drastically and thus make pep-
tide identification a time consuming and high false posi-
tive generating process [32]. Additionally, to capture inter-
genic or intronic novel coding regions, a six frame trans-
lated eukaryotic genome may increase the database search
size thousand folds as only a minor fraction of most of the
eukaryotic genome is believed to be coding. Thus, genomic
databases-based proteogenomic analysis of eukaryotic organ-
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isms only promises a limited success. Rather, by integrat-
ing high-throughput transcriptome profiling, such as cap-
tured by RNA-seq, may provide a compact, condition specific
search database for fast and better proteogenomic analysis
33].

In general, transcripts are assembled from RNA-seq reads
and these are translated in three reading frames to create the
proteomics search database. The mass spectra are searched
against this custom transcriptomic database and also against
annotated protein database. Peptides unique to the transcrip-
tome database indicate novel protein isoforms not annotated
for the organisms (Fig. 1). RNA-seq reads may also be uti-
lized to capture non-synonymous nucleotide variations (both
genomic and RNA editing) into the database which may allow
detection of variant peptides potentially involved in various
diseases including cancers [34]. RNA-seq analysis may also
indicate fusion transcripts which may be checked for their
coding potential by integrating it with the proteomics data
[35]. Thus, integrating the transcripts, profiled from high-
throughput RNA-seq methods, in proteogenomic analyses
may lead to discovery of translated novel exons, splice vari-
ants, non-synonymous mutations, novel genes, correction of
annotations of translation initiation site (TIS) and also the de-
tection of fusion proteins [17]. In cases where the genome is
yet to be sequenced, RNA-seq data can be de novo assembled
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into potential transcripts which greatly enhances the peptide
detection from such under-explored organisms [36).

Various studies have benefited from such an integrative
proteogenomic analysis. Most notable of these are the re-
cently reported draft human proteome maps which captured
several new peptides and proteins previously missed [37, 38].
Although both these studies have been criticized for their le-
nient false discovery rate (FDR) measures [39,40], they added
several new proteins to the previously known human pro-
teome. High error rates are common in proteogenomic stud-
ies primarily due to extra-large genomic or transcriptomic
search database and large amounts of MS/MS data being
searched. Both peptide and protein level FDR estimation and
result filters are necessary to be implemented in proteoge-
nomics studies in order to avoid any error to propagate in
gene and protein annotations in reference proteomes. Re-
cently, we could detect several novel proteoforms in the rat
genome by integrating publicly available RNA-seq and pro-
teomics data using a stringent analysis strategy [33]. Kelkar
et al. utilized transcriptomic and proteomics profiling from
various different organs of zebrafish to comprehensively re-
annotate the genome of this model organism [24]. Violette
et al. discovered several new toxins from cone snail venom by
utilizing similar integrative approach [41]. Further, Dutertre
et al. extended the discovery of conopeptide toxins from cone
snails by integrating mRNA sequencing with high resolution
MS [42]. In another study, new protein toxins could be identi-
fied in jellyfish, whose genome is yet to be sequenced, by in-
tegrating de novo assembled transcripts to create a proteomic
search database [36]. Similar studies have been rewarding
for high-throughput re-annotation of various other genomes
[43]. Integrative proteogenomic approaches have also been
employed to discover novel contributors in various human
diseases primarily cancers. Zhang et al. have carried out an
extensive proteogenomic characterization of colon cancer for
candidate prioritization by integrating genomic variations,
mRNA expression and protein discovery [34]. Similarly, Rug-
gles et al. have identified various single nucleotide and splice
variants in patient-derived breast cancer xenografts [44].

Numerous software tools have been developed to facili-
tate this integrative proteogenomic analysis from RNA-seq
and MS proteomics data. CustomProDB is an R package
which creates proteomics search database by incorporating
the genomic variations called from RNA-seq data [45]. Sim-
ilarly, SpliceDB creates an MS data searchable compact pro-
teome database of splice patterns from RNA-seq reads [46].
MSProGene constructs a sample specific proteome database
from RNA-seq data and also stores the peptide shared-ness
among database entries which may be utilized to resolve the
expression of isoforms [47]. Enosi is a pipeline which pro-
vides a complete solution for proteogenomic re-annotation
of genomes by utilizing the RNA-seq reads to identify pep-
tides from MS data [48]. PGTools, a similar tool, facilitates the
discovery of novel peptides from human disease samples by
integrating the transcriptome data in the protein discovery
process [35]. Integrated transcriptomic-proteomic pipeline
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(ITP) incorporates the reference-based transcriptome assem-
bly to build the comprehensive database to search MS data
and annotate eukaryotic genomes [33]. PPLine is a proteoge-
nomic tool which performs integrated transcriptomic pro-
teomic analysis to discover variant peptides accumulating
amino-acid variations [49]. QUILTS enables the discovery of
coding SNPs and splice variants from the proteogenomic sur-
vey of human disease samples by creating individual-specific
search databases [44]. Galaxy-P is an extension of web base
Galaxy framework and allows comprehensive yet flexible in-
tegrative analysis of transcriptomic and proteomics datasets
[50]. It also extends the capabilities of the commercial soft-
ware ProteinPilot towards proteogenomics. ProteinPilot en-
compasses the Paragon algorithm which discovers peptides
without various restrictions of the search parameters and may
be beneficial in proteogenomic studies [51].

There are only a few studies where above-mentioned tools
are compared with each other for their performances. In a
recent study, we observed that many of these tools actually
provide complementary results in peptide discovery suggest-
ing the use of multiple tools for a comprehensive proteoge-
nomic analysis [33]. Enosi appears to be among the most
comprehensive standalone tool for such integration. How-
ever, ITP utilizes RNA quantities to derive better conclusions
for the expressed isoforms and may be useful in similar stud-
ies. While above mentioned tools have extended our ability
towards integrating RNA-seq within proteogenomics studies,
they still require considerable bioinformatics skills to enable
their effective use. This attribute limits their reach to experi-
mental scientists and improvements in this aspect are badly
required. Although tools like GalaxyP and PGTools are rel-
atively easier to use, proteogenomic software are far from
being in routine analysis primarily due to difficulties in their
implementation.

Ribosome profiling (RIBO-seq), an upcoming nucleotide
sequencing technology, captures transcripts which are
being actively translated by ribosomes [52]. It provides
both qualitative and quantitative information about in vivo
protein translation. It not only delineates ribosome occupied
protein-coding transcripts from non-coding transcripts but
also reflects transcriptome-wide protein translation efficiency
and rates [53]. Thus, it may serve to bridge the gap between
transcriptome and proteome [52]. However, it should be
noted that RIBO-seq may not be a substitute for MS-based
proteome profiling. While RIBO-seq provides much better
depth and coverage of protein translation and can detect
translation on transcripts which typically result in low abun-
dant proteins, it does not reflect the post translational events
like protein degradation rates and PTMs which affect active
protein quantities within a cell. Utilizing the complementary
nature of ribosome profiling, peptide discovery from MS/MS
data can be further improved. Search databases can be
created from RIBO-seq profiled transcripts providing a
compact, precise and specific search space for MS data.
Menschaert et al. have demonstrated that utilizing RIBO-seq
transcripts in proteogenomics study not only increases
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Figure 2. Factors influencing the correlation between mRNA-protein quantities.

peptide discovery but also helps in discovering alternate TISs
[54]. Similarly, Koch et al. could detect various alternate TIS
and new proteins from human cancer cell line by integrating
the RIBO-seq with proteogenomics approach [55]. A recently
developed software PROTEOFORMER enables creation of a
MS friendly search database from RIBO-seq reads and thus
allows seamless integration of proteomics with ribosome
profiling [56].

The availability of analysis software and extensive tran-
scriptomic, and proteomic datasets in public repositories like
GEO [57] and PRIDE [58,59], allows comprehensive proteoge-
nomic analyses leading to refinement of genome annotations
for model organisms, discovery of variant peptides and iso-
forms, discovery of novel disease markers and fusion pro-
teins, etc.

3 Integrative analysis to decipher gene
expression and regulation

For decades, gene expression has primarily been studied at
the transcriptlevel with the assumption that transcript quanti-
ties are indicative of active protein quantities [57]. The explicit
concept of central dogma which determines the functional as-
pects of genetic codes through gene expression (mRNA) and
protein translation has been the hallmark of cellular func-
tional entity. However, several studies have revealed that the
measured quantities of mRNAs and proteins correlate only
modestly [60,61]. Various biological factors, along with the in-
herent experimental noise in high-throughput technologies
and inadequacy of statistical tools, can be attributed to the
poor correlation coefficient observed in those studies [62].
A strong correlation between transcriptomic and proteomic
data would allow predictability of protein quantities from
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highly sensitive transcriptomic methods. However, the lack
of correlation indicates possibility of experimental error or
biological uncoupling between the levels of mRNA and pro-
tein.

Correlation coefficients vary across different organisms
ranging from 0.2 to 0.47 in bacteria, 0.34 to 0.87 in yeast
and 0.09 to 0.46 in multi-cellular organisms [63]. Presence of
weak ribosome binding site (Shine-Dalgarno for prokaryotes
and Kozak for Eukaryotes), regulatory proteins, codon us-
age bias, half-life difference between protein and mRNA are
some of the biological reasons which could be attributed to-
wards weak correlation between measured RNA and proteins
(Fig. 2). Translation efficiency is majorly affected by the num-
ber of ribosomes in a transcription unit which is gener-
ally known as the ribosome density. Experiments on yeast
cells showed that mRNA species having more number
of ribosomes attached have higher translation rates [64].
Schwanhiusser et al. reported that mRNAs are five times
less stable and 900 times less abundant than proteins in mam-
malian cells [62]. Ubiquitination, phosphorylation and cellu-
lar localization are some of the post-translational regulations
which can affect protein half-lives and thus, their detection
[60]. Studies have reported that mRNA abundance can predict
protein abundance only partially, for ~40% genes. Various
post-transcriptional regulations, levels of PTMs, considera-
tion of experiment noise, etc., need to be factored in the equa-
tion to accurately explain the remaining 60% variations [61].

Given that the correlation between transcriptome and pro-
teome data is low, their joint analysis may allow gaining use-
ful insights about the mRNA-protein expression dynamics.
There are different approaches that have been utilized to bet-
ter understand gene expression and its regulation by inte-
grative analysis of transcriptomic and proteomic datasets. By
creating a reference data set using the union of proteomic
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and transcriptomic data from different samples, Nathanael
etal. discovered a significant number of bacterial metabolism
enzymes in Bradyrhizobium japonicum which were not iden-
tified from proteomic data alone [65]. Instead of a direct cor-
relation analysis Purizian et al. have used topological net-
work methods (over-connection analysis, hidden node anal-
ysis, rank aggregation and network analysis) leading to the
identification of common regulatory machinery and signal-
ing pathways that might contribute to the altered state of this
regulatory network in psoriatic lesion [66].

Several approaches have been used to tackle the issue of
missing data in proteomic datasets in order to provide an
unbiased biological interpretation from integration studies
done on temporal expression data. The estimation of miss-
ing values can be done using Nearest-neighbor and Bayesian
principal component analysis (BPCA) methods, and by in-
tegrating the gene ontology (GO) information into the pro-
teomic data imputation. Zero-inflated poisson (ZIP) linear
regression model and a stochastic gradient boosted trees
(GBT) nonlinear model uncover possible relationships be-
tween transcriptomic and proteomic data and improve the
predictability of abundances of experimentally undetected
proteins. Using non-linear optimization model by imple-
menting GBT method, Garcia et al. estimated missing pro-
tein expression in sulfate reducing bacterium, Desulfovibrio
vulgaris [67]. After estimating the non-linear relationship and
missing protein expression values, they could validate the re-
sults using literature knowledge. In another study, Li et al.
used artificial neural network (ANN) approach to predict the
abundance of experimentally undetected proteins in D. vul-
goris [68]. Authors also quantified the contribution of various
sequence measurable factors like mRNA abundance, protein
instability index, gene length, effective number of codons
and codon adaptation index (CAI) in predicting missing pro-
teomic values by using a multiple logistic regression analysis.

Rogers et al. proposed a coupled clustering approach which
creates a certain number of transcriptomic and proteomic
clusters and provides a conditional probability of a gene to
be in a protein cluster given that it is in an mRNA cluster.
Authors have used this approach on time course data for
human mammary epithelial cell line (HMEC) stimulated with
epidermal growth factor (EGF). Using this approach, authors
revealed a complex relationship between transcriptome and
proteome with most mRNA clusters linked to at least two
protein clusters, and vice versa [69].

Further, to gain functional insights from the integra-
tive analysis, several bio-informatics approaches have been
undertaken to develop comprehensive tools like biomaRt
[70], Cytoscape [71], VANTED ([72], ChromeTracks [73], IPA
(http://www.ingenuity.com/), etc. Several integrative tools
are being developed based on the basic conceptual implemen-
tations that corroborate to both the data sets. Simple expres-
sional statistical correlation among different states, extracting
the common functional context [74], topology-based analysis
such as a hidden-node-based network analysis [75], cluster-
ing based on abundance similarity [69], dynamic modeling
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(employing such as Bayesian network, Boolean network, etc.)
[76,77]) have remained the key approaches for such differ-
ent analytical platforms. Recently, Kuo et al. have performed
a comparative study for several of the mentioned integra-
tive tools determining their advantages and disadvantages.
Additionally, they developed a new tool to integrate transcrip-
tomic, proteomic and metabolic data sets [78]. Despite these
advances, there is a dire need to perform a benchmarking
study with similar data sets to document the capabilities of
these bioinformatics pipelines which would provide ease of
use to the researchers.

Besides estimating the protein quantities, discovering the
PTMs on these proteins is crucial to understand the under-
lying signal transduction and cellular responses. PTMs are
specialized covalent modifications on specific amino acids
of any particular protein in a given biological system [79].
PTMs may allow further segregation of protein quantities
into active protein quantities. These modifications act as an
important basis for a protein’s structural as well as func-
tional entity [80]. For instance, several cellular signaling path-
ways like MAP kinase, JAK-STAT, AKT, etc., are driven by
specific phosphorylation events and have been implicated
in many important diseases [81-83] like cancer, different
metabolic diseases, etc. Further to exemplify, glycosylation
of basement membrane proteins such as collagen IV have
been shown to be important in providing the scaffold for
tissue-structure maintenance [84]. Importantly, a significant
portion of these covalent modifications are specific enzyme
dependent. The level and activity of these enzymes are cru-
cial for PTM establishment at a specific time and space. The
advantages of next generation-based gene expression analyt-
ical platforms are to document subtle changes for almost all
the transcripts in a given biological system. Further, the role
of common transcription factors which can drive the occur-
rence of enzymatically catalyzed PTMs can also be inferred
from the integrative analyses. Interestingly, the concept of
individual somatic genetic variations and alternative splic-
ing events could also contribute to the PTM variation which
is limited by the use of standard proteomic database search
strategy in any bottom-up proteomics experiment [85, 86].
Thus, the integration of both approaches could be used
as an important handle to correlate the enzyme-dependent
PTMs to address relevant biological questions. Towards this
end, there is a huge scope for the development of newer
bioinformatics pipelines to determine the level of PTMs
and their accordance with the transcript levels of respective
enzymes.

4 Clinical applications of integrative
transcriptome and proteome analyses

Comparative transcriptome and/or proteome analyses have
been applied to numerous disease studies to identify gene ex-
pression signatures specific to the disease state compared to
non-diseased or healthy controls. Analysis of transcriptomes

www.proteomics-journal.com
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Figure 3. Integrating transcriptomics and proteomics to decipher disease biology. (a) Experimental design: different platforms are available
for generation of high-throughput transcriptome and proteome data. Ribosome profiling which quantitates the translation rate can provide
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diverse applications: Signature genes are often used as biomarkers for disease prognosis and diagnosis or helps in classification of
diseases. Inferences from biological processes or pathways may provide insights about disease mechanisms or therapeutics interventions.

and proteomes from diseased individuals may provide cues
about the functional and molecular correlates (disease mech-
anism) of many complex diseases like diabetes [87-89], pso-
riasis [66], cardiovascular diseases [90] and cancer [91, 92].
Complex disorders are often an outcome of multiple epistatic
gene interactions. Notwithstanding the concerted efforts put
in by the genomic community to delineate the causal genes or
variants, only a small fraction of heritability can be explained
till date for most of the common complex disorders. This is-
sue of “missing heritability” or “missing variance” actually
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reflects the complex etiology of such diseases and thus can-
not be explained by addressing only one tier of regulation.
Apart from the complex regulatory architecture, the pheno-
typic manifestation may well be tissue specific and thus tar-
geted and specific experimental design in such cases becomes
an important consideration. Infection biology has gained a lot
from integrative omics. The detailed mechanisms of many
host-pathogen interactions have been worked out. Pathogen
surveillance and epidemiological data have specially provided
new dimensions to public health. The establishment of an
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infection and further sustenance of the pathogen requires a
fine balance between activation and inactivation of complex
biological processes in both the host and the pathogen. To un-
derstand the host tissue response in lymph node tuberculo-
sis (an extra-pulmonary manifestation of tuberculosis), Maji
et al. integrated transcriptomics and proteomics data from
the host tissue to identify molecular signatures that provide
mechanistic insights into the disease pathology or manifesta-
tion [93]. Likewise, Villar et al. demonstrated how bacterium
ensures its survival in a tick’s cell by modulating the endo-
plasmic reticulum stress towards protein degradation path-
way rather than apoptosis [94]. Molecular signatures iden-
tified using such integrated approaches also provide a new
paradigm for translational research (Fig. 3). Such signatures
could be used as potential biomarkers for efficient treatment.
Disease biomarkers identified using integrative analyses are
better indicators of disease prognosis and diagnosis because
chances of false positives are minimized. Shimwell et al. used
combined transcriptome and proteome analyses as a non-
invasive method towards identifying urinary biomarkers for
urothelial carcinoma. Integrative frameworks can also be an
alternative strategy towards identification of novel drug tar-
gets [91]. Tarun et al. made a remarkable effort in this di-
rection by identifying unique pathways in malaria that can
be used as potential drug targets to prevent infection [95].
To understand and/or determine the impact of therapeutic
interventions, a clear understanding of the underlying molec-
ular processes is required. Zheng et al. described a systems-
level approach or a roadmap to integrate transcriptome and
proteome study for understanding the complex biochemical
mechanism of combination of therapies in case of promyelo-
cytic leukemia [92].

To understand the phenomenon of organ-specific aging
effects in rats, Ori et al. integrated transcriptomics, pro-
teomics and ribosome profiling datasets to identify the cel-
lular changes that manifests at different levels [96]. Age re-
lated transcriptional and translation outcomes were found
to be different in the brain and the liver at different stages.
Liver and brain are impacted more at the transcriptional and
the translational levels, respectively. Protein localization and
post-translational phospho-proteomic analysis also revealed
altered outcomes in aged animals.

In the studies based on an integrated omics design, find-
ings may be analyzed either by taking a consensus of differ-
ent approaches or a single approach for generating testable
hypothesis and other(s) can subsequently substantiate or val-
idate those by focusing on a targeted set of prioritized candi-
dates. In the following sections, we will discuss the different
analytical frameworks and considerations for integrated ex-
perimental designs.

4.1 Sample classification and identification of
biomarkers/features

Gerling et al. discussed the use of various statistical
methods/tests like ANOVA, t-test, multiple test correction
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statistics, Principal component analysis (PCA) and K-means
clustering for comparative analysis of high dimensional tran-
scriptome and proteome datasets. Authors demonstrated the
applicability of these methods in identifying the molecular
markers for susceptibility to autoimmune diabetes [89]. Dif-
ferential signatures (features) obtained from such analysis
can also be used for classifying disease samples. Recently
Swan et al. applied machine learning (ML)-based software
named RGIFE (Rule-guided Iterative Feature Elimination) to
identify biomarkers for osteoarthritis using both transcrip-
tomics and proteomics datasets [97]. This algorithm was
shown to be compatible with multiple data types and has
better performance as it combines heuristic framework with
accuracy from two different methods used in ML paradigm.

4.2 Integrating omics data through network biology
approach

To gain a system-wide understanding of expression regula-
tion, differentially regulated or deregulated genes from the
transcriptome and the proteome datasets should be threaded
via network biology approaches. Nodes (genes) and edges
(connection between nodes) are the two basic components
required to construct a gene expression network. Connection
or relation between genes can be defined based on any kind
of interaction data—Protein-protein interactions (PPIs), co-
expression, genetic interactions, etc. Consequently, networks
can be analysed from two different contexts—Network proper-
ties and network tools (based on knowledge derived annota-
tions). Network properties or attributes (like size, connected-
ness between nodes, centrality and so on) can be used as the
method to prioritize or rank in order to find common regula-
tory points [66]. However, network tools based on annotations
from pathways, ontologies and other functional data (either
literature curated or prediction methods) can find functional
modules from data which is impacted in diseased phenotypes.

5 Concluding remarks

Integrative analyses of transcripts and proteins hold immense
promise towards providing a better understanding of the gene
regulation, genome annotation and the intricate biological
processes that underlie any disease manifestations. Signifi-
cant advancements in molecular profiling techniques as well
as computational resources and data analytics have provided
possibility to perform multivariate analysis for systems-level
understanding from multi-dimensional data. While the dy-
namics of transcriptome and protein expression remains in-
formative to gain insights into the biological processes, a
system-wide understanding can be achieved by further in-
tegrating the other important components of biological sys-
tems. An ideal systems biology study therefore, would require
an integration of all major forms of functional regulations,
i.e., epigenome, genome, transcriptome, translatome, pro-
teome and metabolome. Thus, integrating multiple layers
of high-throughput omics data is an immediate necessity in
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life sciences research. One application of such “multi-omics”
analysis would be in the precision medicine aspects where
a panel of markers identified from integrative analysis may
provide a better predictability in the diagnosis or prognosis
of a particular disease.
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