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Abstract

Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The

succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR

technique has revolutionized genomics research. Several quantification methodologies are available to determine the DNA replication

efficiency of the reaction which is the probability of replication of a DNA molecule at a replication cycle. We elaborate a quantification

procedure based on the exponential phase and the early saturation phase of PCR. The reaction efficiency is supposed to be constant in

the exponential phase, and decreasing in the saturation phase. We propose to model the PCR amplification process by a branching

process which starts as a Galton–Watson branching process followed by a size-dependent process. Using this stochastic modelling and

the conditional least-squares estimation method, we infer the reaction efficiency from a single PCR trajectory.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymerase chain reaction (PCR, Mullis and Faloona,
1987) is an in vitro enzymatic reaction capable of
amplifying the number of copies of a specific DNA
fragment. Mullis was awarded the 1993 Nobel Prize in
chemistry for PCR. This technique is very commonly used
in molecular biology since it is a rapid method which
makes it possible to detect low abundance of DNA (Mullis
et al., 1994). Protocols that quantify rare nucleic acids are
increasingly used (Demidov and Broude, 2004). The ability
to monitor the DNA molecules quantity as they accumu-
late thanks to fluorescence-based detection methods has led
to a strong impetus in quantitative analyses of PCR
(Bustin, 2003). Quantitative PCR (Q-PCR) which aims at
determining the initial amount of specific DNA, known as
the target, present in a biological sample has many
applications in virology (Palmer et al., 2003) or genes
expression studies (Ginzinger, 2002; Pfaffl et al., 2004).

PCR is a DNA amplification technology formed by the
repetition of typically 30–50 replication cycles. The number
e front matter r 2006 Elsevier Ltd. All rights reserved.
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of copies of the target DNA molecules is doubled at most
at each cycle. But in practice, the probability that a
molecule will be successfully duplicated after one amplifi-
cation cycle, known as the efficiency of the reaction, is less
than one. The precise determination of the efficiency is
required in most quantification methodologies of the initial
amount of DNA molecules (Bustin, 2003). The beginning
of PCR is characterized by an exponential increase in
target molecules. Then, because of a depletion of reaction
components or because of a decline in polymerase activity
or because of both (Liu and Saint, 2002), the reaction
efficiency decreases and eventually ceases leading to a
saturation phase decomposed into a linear phase and a
plateau phase. Also, in the course of PCR, mutations may
occur along the DNA-replicated fragments (Krawczak et
al., 1989). As this is common in most of the studies related
to the determination of the replication efficiency, we will
neglect here the copying errors in replication, that is we will
assume that all replicated molecules are identical to the
initial template target molecules.
In the literature, the theory of Galton–Watson branch-

ing processes in discrete time, the time step being a
replication cycle, has been extensively used to model the
exponential phase of the amplification process. Sun (1995)
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1We denote by PCR amplification trajectory, or simply PCR trajectory,

the observation of the successive DNA molecule quantities monitored at

each replication cycle, that is the observation of the fluorescence

counterpart of fNkg1pkpnmax
with nmax the total number of replication

cycles performed. Recall that nmax ranges typically between 30 and 50.
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and Weiss and Von Haeseler (1995) examined replication
errors of the DNA polymerase enzyme. Ignoring these
copying errors in replication, Stolovitzky and Cecchi
(1996) studied the number of cycles during which the
PCR amplification process undergoes the exponential
phase and may therefore be modelled by a Galton–Watson
branching process. In this setting, Peccoud and Jacob
(1996, 1998) built conditional least-squares estimators of
the reaction efficiency. Piau (2001) investigated PCR from
a probabilistic perspective. Branching processes provide
general population dynamic models, and are used in the
modelling and analysis of many biological phenomena
(Jagers, 1975; Haccou et al., 2005). Relying on the
enzymological approach of PCR performed by Schnell
and Mendoza (1997), Jagers and Klebaner (2003) modelled
the DNA amplification process by defining a size-depen-
dent branching process with the following replication
efficiency:

pðNnÞ ¼
K

K þNn

, (1)

where K is a Michaelis–Menten constant type of the
reaction, and Nn is the number of DNA molecules present
at replication cycle n.

In this paper, we present a statistical procedure to
estimate the reaction efficiency from a single amplification
trajectory by using a stochastic modelling of the PCR
amplification process. The model generalizes the one
proposed by Jagers and Klebaner (2003). The PCR
amplification process is modelled by a size-dependent
branching process which enables one to take into account
the stochastic variability of the reaction and both phases of
the amplification process, that is the exponential phase and
the saturation phase.

We indicate in Section 2 the approximate relationship
upon which most current quantification methodologies are
based to estimate the reaction efficiency. In Section 3, we
define a size-dependent branching process modelling of the
two phases of the amplification process based on the notion
of saturation (Lalam et al., 2004). We assume that there
exists a saturation threshold S such that the reaction
efficiency pðNnÞ at cycle n is a decreasing function of
SðNnÞ=S ¼ maxðNn=S; 1Þ with maxða; bÞ being equal to the
maximum between a and b. Therefore, the reaction
efficiency is modelled as being constant as long as NnoS,
where PCR undergoes its exponential phase, and the
reaction efficiency is assumed to decrease when NnXS,
where PCR is in its saturation phase. The function pð�Þ is
such that the model we propose generalizes (1) and leads to
good data fits (Lalam, 2003; Lalam et al., 2004).
Furthermore, pð�Þ is chosen such that we can apply
theoretical asymptotic results related to the estimation of
the offspring mean of a general size-dependent branching
process by the conditional least-squares method (Lalam
and Jacob, 2004). Note that the asymptotics consist in
letting n go to infinity such that Nn goes to infinity. In the
PCR setting, even if the replication cycle n is of the order of
a few dozens, the corresponding number of molecules Nn is
very large due to the exponential phase of the PCR
amplification so that theoretical asymptotic results in
Lalam and Jacob (2004) may be applied. We define and
study the conditional least-squares estimators of the
reaction efficiency based on a single PCR amplification
trajectory. We estimate parameters of the reaction effi-
ciency model, and also the cycle of the end of the
exponential phase by using the conditional least-squares
method. Although our theoretical results are asymptotic
and although we rely on a few successive observations to
infer the reaction efficiency, we obtain accurate estimators
with simulated or real-time PCR data. This is explained by
the strong law of large numbers leading to a good precision
of the observations at the end of the exponential phase and
in the saturation phase. Finally, we conclude the paper by a
discussion of the presented results to determine the reaction
efficiency. Mathematical technicalities are deferred to the
Appendix.

2. Mathematical model currently used

The release of systems allowing to collect kinetic PCR
data as they are generated during the amplification has
revolutionized Q-PCR (Higuchi et al., 1992): at each
replication cycle, a measurement of the fluorescence
emitted by the accumulated DNA molecules is performed.
As noted by Rutledge (2004), the fluorescence chemistry is
currently widely used to monitor the amount of DNA
molecules amplified by PCR.
Current Q-PCR protocols rely on the exponential phase

of the PCR amplification trajectory1 (Bustin, 2003). The
quantification is based on the classical assumption that the
fluorescence measured at cycle n, denoted by Fn, is
proportional to the number of DNA molecules Nn, the
present DNA molecules being measured thanks to the
fluorescence they emit (Kang et al., 2000). Current
quantification methodologies rely on the approximation

Nn ’ ð1þ pÞnN0, (2)

where N0 is the number of DNA molecules initially present
before amplification by PCR, and p is the reaction
efficiency assumed constant during the exponential phase
(see Chapter 3 of Bustin, 2003). The geometric series model
(2) does not take into account the stochasticity of the
amplification process. Furthermore, most of the current
quantification procedures use only one observation per
amplification trajectory, assumed to be in the exponential
phase, and need many of them. For example, the
predominant Q-PCR methodology is a threshold-based
procedure requiring the elaboration of standard curves
(Rutledge and Côté, 2003). This relies on observations of
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several PCR trajectories at a replication cycle, known as
the fractional cycle, at which the PCR trajectories have
identical amounts of replicated DNA molecules. This
common amount of DNA molecules is set above the
background noise of the DNA quantity measuring device.
Van et al. (2005) described a method for determining the
fractional cycle relying on the study of the second
derivative of the fluorescence signal with respect to the
replication cycle. A standard curve is constructed by
amplifying known initial amounts of dilutions of a
standard assumed to have the same efficiency as the target.
Relying on the approximate relationship (2) and on the
assumption that the amount of fluorescence signal is
proportional to the number of present molecules, the
fractional cycle measured for each dilution is proportional
to the logarithm of the initial amount of the target. The
reaction efficiency is then obtained by regression analysis.
This efficiency is assumed to be the same for all the
standard dilutions and the target but some authors noticed
that this assumption may be questionable (Raeymakers,
1995). Alvarez et al. (2000) conducted a simulation study of
the influence that reaction efficiency differences between
the target and the standard templates have on target
quantification.

Note that the fractional cycle is also called threshold
cycle, denoted by Ct, in ABI PRISMTM literature (Applied
Biosystems, Foster City, CA, USA), whereas it is called
crossing point, denoted by CP in LightCyclerTM literature
(Roche Applied Science, Indianapolis, IN, USA). See
Wong and Medrano (2005) for more details.

Q-PCR requires expensive equipment and reagents.
Recently, quantification procedures based on a single
PCR trajectory have been proposed (Ramakers et al.,
2003; Rutledge, 2004). This presents the advantage of
reducing the costs of the PCR experiment. In this study, we
propose an alternative method to infer the reaction
efficiency from a single PCR trajectory using a particular
class of branching processes. This stochastic modelling
enables us to account for the variability inherent to the
amplification by PCR.
3. Stochastic modelling

As in Jagers and Klebaner (2003), we assume that each
molecule can give birth in the next cycle to two identical
molecules if the replication succeeds or remains unchanged
otherwise. The number of DNA molecules at cycle nþ 1 is
given by the recursion formula

Nnþ1 ¼
XNn

i¼1

Y nþ1;i, (3)

where Y nþ1;i is the number of offspring at cycle nþ 1 of the
ith molecule belonging to cycle n. The random variable
Y nþ1;i can take only two values: Y nþ1;i ¼ 2 if molecule i

present at cycle n has been successfully replicated, and
Y nþ1;i ¼ 1 otherwise. We assume that, Nn being given, the
offspring fY nþ1;igi are independent and identically distrib-
uted (i.i.d.) random variables. The stochastic process fNngn
thus defined is a branching process. See Haccou et al.
(2005) for more detail on branching process theory. If all
the random variables fY nþ1;ign;i have a common distribu-
tion such that the probability that Y nþ1;i ¼ 2 is equal to the
constant value p, then fNngn is a Galton–Watson branching
process whose expectation satisfies

EðNnÞ ¼ ð1þ pÞnEðN0Þ. (4)

This equality is similar to the approximation (2): relation-
ship (2) is obtained from (4) where the mean of the random
variable Nn (respectively, N0) is substituted by Nn

(respectively, N0).
We assume here that the replication at a given cycle

depends only on the reacting components initially intro-
duced in the reaction tube and on the amount of molecules
already synthesized at this cycle. Then, the process fNngn
may be considered as a size-dependent branching process:
the reaction efficiency at cycle n is a function of the number
of molecules present at cycle n. We will denote by pðNnÞ the
efficiency at cycle n.
The aim is estimation of the reaction efficiency pð�Þ where

the whole amplification process is modelled by a size-
dependent branching process. The advantage of using also
the saturation phase is that this phase is relatively much
less noisy than the exponential phase, and it enables one to
use more data for inference. The efficiency pðNnÞ is
supposed to satisfy the following assumption: there exists
a saturation threshold, denoted by SXN0, such that, when
NnoS, the underlying branching process is considered as a
Galton–Watson branching process with constant efficiency
pðNnÞ ¼ p, whereas when NnXS, the branching process is a
near-critical size-dependent branching process with effi-
ciency pðNnÞ decreasing to zero as n (and therefore Nn)
increases. We assume that the efficiency pðNnÞ is a
decreasing function of SðNnÞ=S (recall that
SðNnÞ=S ¼ maxðNn=S; 1Þ). More precisely, we consider
the following parametric efficiency model introduced in
Lalam et al. (2004):

pðNnÞ ¼

K

K þ S
if NnoS;

K

K þNn

� �
1þ expð�CðNn=S � 1ÞÞ

2

� �
if NnXS;

8>>><>>>:
(5)

where K, S and C are unknown parameters in R�þ. This
efficiency model fits into the exponential phase and the
linear part of the saturation phase (Lalam et al., 2004). The
quantity K=ðK þ SÞ ¼ p is the reaction efficiency of the
exponential phase. The assumption (K40 and S40) yields
0opo1 which is consistent with real-time PCR experi-
ments. Note that the Galton–Watson branching process
modelling the PCR exponential phase is called supercritical
because p40. Model (5) is expressed in the number of
DNA molecules whereas the real-time PCR data are
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expressed in fluorescence units. We make the classical
assumption that the fluorescence emitted by the present
DNA molecules is proportional to the number of present
DNA molecules (Bustin, 2003). Since the proposed
efficiency model depends on the ratio SðNnÞ=S for which
the proportionality coefficient between fluorescence and
DNA molecules simplifies, one can obtain efficiency
estimators even when considering real-time measurements
expressed in fluorescence units.

Note that model (1) proposed by Jagers and Klebaner
(2003) is an efficiency model for which saturation occurs at
the beginning of the reaction, S ¼ N0 whereas in model (5),
there exists an exponential phase if S4N0.

We estimate the parameters of the efficiency model (5)
thanks to the conditional least-squares methodology using
n� hþ 1 consecutive observations of the process, starting
from the observation at cycle h. The conditional least-
squares estimator of ðK ;S;CÞ, denoted by ð bKn; bSn; bCnÞ,
minimizes the sum of squared differences between the
process and its conditional expectation, each squared
difference being adequately weighted by a positive quantity
of the order of the variance of the process. This sum of
squared differences, also called contrast in the statistical
literature, will be denoted by SSnðK ;S;CÞ. See the
Appendix for more details.

In practice, the starting cycle h taken into account in the
contrast will be set large enough so that we do not consider
the first noisy observations from the exponential phase. It
is well-known that the early observations are below the
background noise and therefore useless for quantitative
purposes, and that they become relatively less noisy as
more and more DNA molecules accumulate (Bustin, 2003).

From a theoretical perspective, one can describe the
asymptotic properties of bKn as n!1 (Lalam et al., 2004).
We denote by ns the first cycle of the saturation phase: if
nons then Nn belongs to the exponential phase (NnoS),
and if nXns then Nn belongs to the saturation phase

(NnXS). Then let F�1n ðnsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPns

k¼hþ1ð1þ pÞk�1 þ n� ns

q
be the rate of convergence of the estimator. Then we have

Proposition. (a) Strong consistency: limn!1
bKn ¼

a:s:
K ,

(b) Asymptotic distribution:

lim
n!1

F�1n ðnsÞ
bKn � Kffiffiffiffiffiffiffi

2K
p ¼

D
Nð0; 1Þ. (6)

Proof. See Proposition 5.1 of Lalam et al. (2004). &

This proposition means that on each trajectory, f bKngn
tends to the true parameter value K with a rate of
convergence F�1n ðnsÞ, and that the asymptotic distribution
of F�1n ðnsÞð bKn � KÞ=

ffiffiffiffiffiffiffi
2K
p

is the standard Gaussian dis-
tribution. This entails that, if the saturation threshold S is
known, one can construct a confidence interval for the
efficiency of the exponential phase p ¼ K=ðK þ SÞ. In
practice, since the saturation threshold S and the cycle ns of
the end of the non-saturated phase are unknown, one
would construct an approximate confidence interval for
which the conditional least-squares estimator bSn is
plugged-in instead of S and the value of ns is estimated
by the cycle bns such that, from this cycle on, the process is
larger than bSn.
Although the results of the proposition are asymptotic,

one may also obtain accurate estimators at finite n when
using a single PCR amplification trajectory. The efficiency
model (5) was validated with two data sets obtained on an
ABI PRISMTM measuring device (Applied Biosystems,
Foster City, CA, USA) when using observations in the
exponential phase above the background noise and in the
early saturation phase (Lalam et al., 2004). We proceed as
follows when analysing data expressed in fluorescence
units. Recall that Fk represents the measured fluorescence
at replication cycle k, and is assumed proportional to the
number of DNA molecules Nk. Let SSh;nðK ;S;CÞ ¼
SSnðK ;S;CÞ=ðn� hÞ be the normalized contrast. In theory,
one should normalize SSnð�Þ with the quantity F�1n ðnsÞ but,
since this rate of convergence contains unknown para-
meters, we use the normalization n� h instead of F�1n ðnsÞ.
In order to derive the reaction efficiency estimator using
the normalized contrast, we consider a window of
observations ½h0; n0� such that the observations belonging
to this interval are reliable, that is above the background
noise. Cycle h0 belongs to the exponential phase, and cycle
n0 belongs to the linear part of the saturation for which
model (5) is valid (Lalam, 2003; Lalam et al., 2004). Once
this window ½h0; n0� is selected, we consider several windows
½h0; n0� inside ½h0; n0�, with h0 from the exponential phase and
n0 from the early saturation phase, and we search the best
window of observations ½h; n� included in ½h0; n0� which
leads to the best fit. This means that the observations from
cycles h to n are such thatSSh;nð bKn; bSn; bCnÞ minimizes the
set

ðSSh0 ;n0 ð
bKn0 ; bSn0 ; bCn0 ÞÞh0ph0obnobs;graph

s on0pn0
. (7)

Cycle bnobs;graph
s is a graphical estimation of the end of the

exponential phase defined as the first cycle of the decrease
of 10 consecutive values of the simple estimator of the
amplification rate fFk=F k�1gk (Peccoud and Jacob, 1996).
The constraint h0obnobs;graph

s on0 aims at ensuring that cycle
h0 belongs to the exponential phase, and cycle n0 to the
saturation phase. We set h0 ¼ supðk : F k�1p0Þ, that is
Fk40 for all kXh0, since the values of the measurements
of the emitted fluorescence have a meaning only when they
are positive. By trial-and-error, we set n0 ¼ bnobs;graph

s þ 7. In
order to compute the estimates more efficiently, the
preliminary interval ½h0; n0� may be given by an experienced
experimenter who should select h0 from the exponential
phase and above the background noise, and n0 from the
linear part of the saturation phase.
We present the results obtained for a simulated PCR

trajectory and real-time PCR data. The simulation is done
as follows. Recall that the offspring fY nþ1;igi are i.i.d.
conditionally to Nn with Y nþ1;i ¼ 2 when the replication
has succeeded, and Y nþ1;i ¼ 1 otherwise. Since we have
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Fig. 2. Real-time PCR data. y-coordinate: reaction efficiency; x-coordi-

nate: replication cycle; dashed line: observed reaction efficiency; solid line:

estimated reaction efficiency. The window of observations selected via

criterion (7) is ½h; n� ¼ ½22; 29�. For this window, the estimate of the

reaction efficiency of the exponential phase is bpn ¼ 0:731, the estimate of

the end of the non-saturated phase is bns ¼ 25, and bKF
n ¼ 0:254,bSF

n ¼ 0:094, bCF
n ¼ 0:07.
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proposed that the probability of replication at cycle n is
modelled by pðNnÞ defined in (5), then PðY nþ1;i ¼

2jNnÞ ¼ pðNnÞ. Therefore, in view of (3), the process
fNngn is recursively defined by

Nnþ1 ¼ Nn þ BinðNn; pðNnÞÞ; nX0, (8)

where BinðN; qÞ is a random variable having a binomial
distribution with parameters N and q. Consequently, in
view of (5), once N0, K, S and C are given, one can simulate
fNngn using (8). In order to reproduce fluorescence data
that are very noisy in the early exponential phase and
relatively more accurate after a threshold has been crossed,
we add a Gaussian noise to fNngn. The noise was tuned
such that its influence decreases as n increases and
disappears after some threshold cycle. Fig. 1 shows the
estimators obtained with a PCR simulation trajectory for
which the true reaction efficiency in the exponential phase
is p ¼ 0:8. Fig. 2 shows the results obtained with a real-time
PCR trajectory obtained on ABI PRISMTM 7700 (Applied
Biosystems, Foster City, CA, USA) and provided by the
Laboratory of Phytopathology and Methodology of
Detection, INRA, France. The plot in dotted line is the
plot of F k=F k�1 � 1 versus the replication cycle k. The
quantity F k=F k�1 � 1 is an estimate of the observed
efficiency (Peccoud and Jacob, 1996, 1998). The plot in
solid line represents the estimator of the efficiency pðFk�1Þ

defined in (5) for which ðK ;S;CÞ is replaced by ð bKn; bSn; bCnÞ

which is the conditional least-squares estimator computed
for the best window ½h; n� chosen by applying criterion (7).
Since p ¼ K=ðK þ SÞ, the efficiency of the exponential
phase is estimated by bpn ¼

bKn=ð bKn þ bSnÞ. The fitted
reaction efficiency equals the estimate bpn as long as the
replication cycle k is less than the estimated end of the non-
saturated phase bns ¼ supðl : F l�1obSnÞ. For kXns, the
fitted efficiency according to model (5) is the following
5 10 15 20 25 30 35

−1

−0.5

0.5

1

1.5

2

Fig. 1. Simulation. y-coordinate: reaction efficiency; x-coordinate: repli-

cation cycle; dashed line: observed reaction efficiency; solid line: estimated

reaction efficiency. The window of observations selected via criterion (7) is

½h; n� ¼ ½14; 24�. For this window, the estimate of the reaction efficiency of

the exponential phase is bpn ¼ 0:815, the estimate of the end of the non-

saturated phase is bns ¼ 17, and bKn ¼ 1:965� 106, bSn ¼ 4:463� 105,bCn ¼ 0:25.
decreasing function of F k:bKnbKn þ F k

 !
1þ expð� bCnðF k=bSn � 1ÞÞ

2

 !
.

In Figs. 1 and 2, for the early cycles, the ratio Fk=F k�1

(dotted lines) behaves very erratically as a result of the fact
that the fluorescence values are below the background
noise. In the reliable part of the exponential phase, this
ratio stabilizes, and then decreases in the saturation part.
The obtained fit in Figs. 1 and 2 are quite accurate at the
end of the exponential phase and in the saturation phase.
As concerning Fig. 2 related to real-time PCR data, the fit
at the end of the saturation phase is relatively less accurate:
the solid line is above the dotted line. This is due to the fact
that the process undergoes the linear part of the saturation
for which model (5) is no more valid.
In order to make a distinction between the parameters

related to numbers of molecules and those related to
fluorescence data, we denote by KF (respectively, SF and
CF ) the counterpart of the parameter K (respectively, S and
C) when the quantity of DNA molecules is measured
through the fluorescence emitted by the molecules.
4. Discussion

Q-PCR is widespread in molecular biology and has
various applications spanning from medical diagnosis to
forensic science. The ability to collect data as PCR
proceeds thanks to fluorescence-based methods had a
tremendous impact on quantitative analyses of PCR. Many
quantification procedures are available for Q-PCR (Bustin,
2003), and a growing number of studies addresses PCR
efficiency calculations (Larionov et al., 2005). The method
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we propose allows us to construct an estimator of the
reaction efficiency from the observation of consecutive
measurements of a single trajectory as opposed to the
threshold-based procedure that needs many amplification
trajectories for the generation of standard curves. Estima-
tion is based here on a stochastic modelling of the PCR
amplification process relying on the size-dependent branch-
ing process theory, and generalizing the model of Jagers
and Klebaner (2003). This stochastic modelling arises
naturally when considering the size evolution of in vitro
populations for which the offspring distribution depends
on the existing population size, and possibly on saturation
phenomena. Based on this modelling, we have provided a
novel method to determine the reaction efficiency thanks to
a conditional least-squares procedure using reliable ob-
servations from both phases of a single PCR trajectory,
that is the exponential and the early saturation part.
Preliminary results on two data sets obtained on an ABI
PRISMTM platform (Applied Biosystems, Foster City, CA,
USA) have led to satisfying fits (Lalam et al., 2004).

Our method is based on a parametric modelling of the
reaction efficiency in both PCR phases as a function of the
quantity of present DNA molecules, and this reaction
efficiency model is used to define the branching process
accounting for the stochastic accumulation of the DNA
molecules. However, other quantification methods relying
on the kinetics of a single amplification trajectory are
available. For example, some authors parameterized
directly the fluorescence process Fk versus the replication
cycle k. Rutledge (2004) proposed to fit a sigmoid function
to the PCR amplification trajectory. Goll et al. (2006)
performed nonlinear regressions of fluorescence data F k

versus cycle k by using sigmoid-type functions possibly
corrected with a linear term to model a baseline drift. They
considered fluorescence data belonging to both phases of
PCR, and they either defined a specific weight function or
they log10 transformed the data to account for the late
plateau phase. Tichopad et al. (2003a,b) inferred the
reaction efficiency from a single amplification trajectory
by using successive observations of the early exponential
phase, the other observations being discarded from the
estimation via adequate algorithms. The advantage of our
method is that it uses both phases of PCR and it accounts
for the stochastic variability inherent to the amplification
trajectory.

An interesting line of research would be to propose an
automated method to select the preliminary window of
observations ½h0; n0� appearing for selecting the observa-
tions from cycles ½h; n� in (7) upon which the reaction
efficiency is estimated. Future investigation consists in
implementing the proposed estimation procedure with
other data sets.
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Appendix

At cycle nþ 1, the conditional probability that
Y nþ1;i ¼ 2, given the number of molecules Nn at the
previous cycle, equals PðY nþ1;i ¼ 2jNnÞ ¼ pðNnÞ. Note
that, since Y nþ1;i equals either 1 or 2, this entails
PðY nþ1;i ¼ 1jNnÞ ¼ 1� pðNnÞ. Furthermore, the condi-
tional expectation and variance of Y nþ1;i, given Nn, reads

EðY nþ1;ijNnÞ ¼ 1þ pðNnÞ,

varðY nþ1;ijNnÞ ¼ pðNnÞð1� pðNnÞÞ.

We denote here pðNnÞ by pK ;S;CðNnÞ to indicate in the
notation that the model efficiency (5) is parametric with
unknown parameter ðK ;S;CÞ. The offspring mean model
EðY nþ1;ijNnÞ ¼ mðNnÞ ¼ 1þ pK ;S;CðNnÞ reads

mðNnÞ ¼

1þ p if NnoS;

1þ
K

2Nn

þ rðNnÞ if NnXS;

8<: (9)

with the remainder term rðNnÞ satisfying

rðNnÞ ¼
K

NnðK þNnÞ
�

K

2
þNn

expð�CðNn=S � 1ÞÞ

2

� �
¼ 0ðN�2n Þ.

The notation an ¼ 0ðbnÞ means that limn!1an=bno1.
In view of (9), it was proved in Lalam et al. (2004) that

the conditional least-squares estimator of K is strongly
consistent (part (a) of the proposition), and that its
asymptotic distribution, under appropriate normalization,
is Gaussian (part (b)). More precisely, we consider the
contrast SSnð�Þ defined by the following sum of conditional
weighted squares:

SSnðK ;S;CÞ ¼
Xns

k¼hþ1

ðNk � ð1þ pK ;S;CðSÞÞNk�1Þ
2N�1k�1Nns

þ
Xn

k¼nsþ1

ðNk � ð1þ pK ;S;CðNk�1ÞÞNk�1Þ
2.ð10Þ

The conditional least-squares estimator ð bKn; bSn; bCnÞ mini-
mizes SSnðK ;S;CÞ with respect to K, S, and C.
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