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a b s t r a c t

In recent years, gene fusions have gained significant recognition as biomarkers. They can assist treatment
decisions, are seldom found in normal tissue and are detectable through Next-generation sequencing
(NGS) of the transcriptome (RNA-seq). To transform the data provided by the sequencer into robust gene
fusion detection several analysis steps are needed. Usually the first step is to map the sequenced tran-
script fragments (RNA-seq) to a reference genome. One standard application of this approach is to esti-
mate expression and detect variants within known genes, e.g. SNPs and indels. In case of gene fusions,
however, completely novel gene structures have to be detected. Here, we describe the detection of such
gene fusion events based on our comprehensive transcript annotation (ElDorado).

To demonstrate the utility of our approach, we extract gene fusion candidates from eight breast cancer
cell lines, which we compare to experimentally verified gene fusions. We discuss several gene fusion
events, like BCAS3–BCAS4 that was only detected in the breast cancer cell line MCF7. As supporting evi-
dence we show that gene fusions occur more frequently in copy number enriched regions (CNV analysis).
In addition, we present the Transcriptome Viewer (TViewer) a tool that allows to interactively visualize
gene fusions. Finally, we support detected gene fusions through literature mining based annotations and
network analyses.

In conclusion, we present a platform that allows detecting gene fusions and supporting them through
literature knowledge as well as rich visualization capabilities. This enables scientists to better understand
molecular processes, biological functions and disease associations, which will ultimately lead to better
biomedical knowledge for the development of biomarkers for diagnostics and therapies.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Gene fusions are found in many cancer types, and have been
shown to be prognostic biomarkers in several studies [1–4]. A
favorable property of gene fusions as biomarkers is their absence
in normal tissue. Thus, targeting fusion transcripts can potentially
provide a very specific biomarker. In addition, gene fusions often
have a direct functional impact on the molecular processes in the
cell. For instance, the well-studied TMPRSS2-ERG gene fusion leads
to overexpression of ERG and hence the cancer develops androgen-
independence, as seen in many prostate cancers [4].

Through the recent advances in Next-generation sequencing
technology it has become possible to screen for known and novel
gene fusion events on a genome wide scale. The prerequisite for
a robust detection is a paired-end sequencing of the cell’s tran-
scriptome. Meanwhile, this sequencing has become a commodity
and the bottlenecks in gene fusion detection have shifted towards
data analysis and visualization.
ll rights reserved.
Recently, many tools have been published that allow handling
specific aspects of the data analysis pipeline needed to detect
and validate gene fusions [5–8]. The first data analysis step is map-
ping the sequenced mRNA fragments to a reference [9,10]. For
mapping paired-end RNA-seq data a mapper should have certain
capabilities, these are: the ability to process paired-end informa-
tion, the ability to align fragments that span over multiple exons
and the ability to align fragments that originate from separate re-
gions of the genome. The last capability is needed to specify the
breakpoints that caused the gene fusion.

After having mapped the reads gene fusion detection tools can
be applied. One major concern thereby is to reduce the number
of false positive (FP) calls. When sequencing hundreds of millions
of reads, a very small percentage of false alignments can lead to
a FP gene fusion call. Thus, filtering steps in which suspicious gene
fusion events or alignments are removed are paramount. Another
important aspect of calling gene fusions is the transcript annota-
tion reference used as basis for their detection. To this end, tran-
scripts from a single resource like RefSeq [11] or Ensembl [12]
are often used.

After the gene fusions have been detected they should be com-
pared to known literature and inspected visually. The visual
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inspection is an important step to provide a second level of quality
control. The expression profiles of the putative gene fusion part-
ners can, for instance, give an indication about the expression of
the original genes and the fusion gene, and hence give insight into
potential FP calls. Many gene fusion events like TMPRSSS2-ERG are
reoccurring in certain cancer subtypes, thus it is helpful to scan the
literature for gene fusions and the genes that constitute the fusion.
This can be done through dedicated databases that contain gene
fusion information, by mining through the known literature or
by analyzing networks and gene regulatory effects.

In this work, we present a gene fusion pipeline that covers all
aforementioned aspects. We have embedded several levels of qual-
ity control (QC), multiple FP filters, gene fusion visualization tools
and support of the analysis through annotation and literature
knowledge. The annotation used in this work extends over the
usage of one transcript resource by generating a comprehensive
but non-redundant transcript resource from RefSeq [11], Ensembl
[12], GenBank [13] and by orthologous cross mapping. A novel tool
presented here is the Transcriptome Viewer (TViewer) that, to the
best of our knowledge, is the first tool to directly visualize detected
gene fusions on the transcript level.
2. Methods and applications

2.1. NGS datasets

Illumina provided the NGS dataset used in this work within the
iDEA challenge 2011 [14]. This dataset consists of eight well-
characterized breast cancer cell lines obtained from the American
Type Culture Collection (ATCC). These cell lines can be categorized
in ER+ (MCF7, T47D, ZR-75-1, BT-474), ER� (MDA-MB-231, MDA-
MB-468, BT-20) and non-tumorigenic (MCF10A). Hence, MCF10A
is used as control. From this dataset we used the 50 bp paired-
end RNA-seq data and low pass genomic sequencing data
(50 bps) both sequenced on the Illumina Genome Analyzer. The
complete dataset can be obtained from the Gene Expression Omni-
bus (GSE27003).
2.2. Annotations

As prerequisite for gene fusion calls known transcripts have to
be provided. These are usually taken from a single resource like
RefSeq or Ensembl. Here we use the ElDorado transcript annota-
tion, a resource that integrates transcript annotations from RefSeq
[11], Genbank (full-length cDNAs) [13] and Ensembl [12]. To pro-
cess these transcripts and cDNAs all respective sequences are
mapped to the genome. In a subsequent merging step, all tran-
scripts with identical exon-exon boundaries and no more than 50
bps difference in their 50- and 30-ends are merged. In addition, tran-
scripts are inferred in one organism from another with our proprie-
tary transmapping approach. An orthologous transfer of a
transcript annotation requires all exons and splice-junctions to
match known transcript annotations.

Complementary to the genomic annotations, we have compiled
an extensive literature and pathway database to relate detected
gene fusions with published literature and biological networks.
This database contains expert curated literature annotations from
Molecular Connections (NetPro) and Genomatix. These annota-
tions provide semantic information on the relations between
genes. In addition, automatically extracted relations between
genes, diseases and pathways are collected from NCBI’s PubMed
database. To understand gene fusions in the context of biological
networks and gene regulatory interactions, various canonical path-
way resources (e.g. NCI-nature pathway interaction database [15],
Biocarta, Reactome [16]) are employed, as well as our transcription
factor database MatBase.

2.3. Mapping

The RNA-seq and DNA-seq reads were both aligned to the gen-
ome; in addition the RNA-seq dataset was also aligned to the
transcriptome. The mapper operates on seeds that are organized
in a tree structure. The seed length can range from 8 to 25 bps,
8 being the shortest unique sub word found in the human refer-
ence genome and 25 being a length at which most subsequences
in the genome are unique. For several reasons we check for multi-
ple seeds in each read. First, parts of the read might not contain a
seed. This may be caused by sequencing errors, SNPs, indels or
ambiguous regions in the reference. Second, sequenced reads
might not fit to the reference in one ‘piece’, i.e. – chromosomal
rearrangements can lead to reads that span from one chromosome
to another and RNA-seq reads often span over introns. To cover
these cases for a given read multiple seeds are considered as
anchor positions. These anchors are then used to align the
complete read to the reference, using the Needleman-Wunsch
[17] algorithm.

Using multiple seeds allows for the generation of spliced align-
ments. To do this, two general modes are available. One is the glo-
bal spliced alignment that allows for breaking reads into two
segments with arbitrary distances, or between chromosomes. This
mode is used to find chromosomal break points. The second mode
is the local spliced alignment, which performs a spliced alignment
within a region of 1 million bps, using a subroutine that allows
splicing the read multiple times. This mode is used to map mRNA
sequences that span over multiple exons. For gene fusion detection
we enable both modes.

To incorporate paired-end information into the mapping, the
distances between the pairs are matched against the background
distribution. If these are not within the expected distance (three
standard deviations from the mean), suboptimal alignments are
considered. If for one of these suboptimal alignments the mapping
is within the expected distance this partner is reported as final
alignment. This step is important to reduce the number of false po-
sitive gene fusion calls.

2.4. Gene fusion detection

We detect gene fusions of transcripts within and across chro-
mosomes. This detection is based on paired-end reads that are un-
iquely mapped to transcripts from different loci. The approach
consists of four steps. These are: filtering, clustering, inclusion of
splice-junction information and scoring. The filtering removes
read-pairs if one or both pairs do not uniquely map to the genome,
if the pairs align within the expected distance or if any pair is con-
tained in an artificial pileup. All pairs that pass the filters and are
mapped to transcripts from different loci are considered for the
second step. In the second step, mate-pairs that map to proximal
positions and have the same strand orientation are clustered, to
generate gene fusion predictions.

For each gene fusion prediction, single-end reads spanning
(spliced-alignment) the transcripts are used to determine the exact
breakpoint. In the last step, several scores are determined to rank
the gene fusion candidates. The first two scores are the number
of spliced reads and the number of paired-end reads that support
the gene fusion. In addition, a breakpoint score is calculated. This
score quantifies the difference between the read coverage up-
stream and down-stream of the breakpoint. To calculate the break-
point scores the coverage of the regions 50 and 30 of the breakpoint
region are compared to the coverage between the breakpoints. The
breakpoint score (ranging from 0 to 1) is calculated as:
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ðSeqCovmax � SeqCovminÞ=SeqCovmax
where SeqCovmax is the higher and SeqCovmin the lower coverage
value.
2.5. Copy number variations (CNVs)

To determine copy number variations a gene centric approach is
employed. For each annotated gene locus the number of DNA-seq
reads aligning to the locus are counted. From this mapping a nor-
malized copy number value (NE) [18] is calculated for each gene.
2.6. Visualization of gene fusions (TViewer)

The Genomatix Transcriptome Viewer (TViewer – Fig. 1) pro-
vides a framework for visually integrating transcript annotations
and gene fusions with RNA-seq data. In the standard view each
transcript is drawn separately whereas the splicing graph view
identical exons and promoters are merged. Exons, promoters and
splice junctions are drawn according to their read coverage. The
integrated paired-end viewer shows the coverage of sequenced
fragments and the distance of the respective paired-end reads
along the transcript. Fragments are only considered if both mates
uniquely map. This indicates whether the transcript is completely
covered with reads and if these are within the expected distance.
The gene fusion visualization allows for interactively visualizing
not only known transcripts but also novel fusion products. Expres-
sion information is also displayed for each exon and splice-
junction and can be plotted for the entire fusion transcript at base
resolution.
Fig. 1. TViewer visualization of the gene fusion BCAS3–BCAS4 in MCF7. The paired-end v
The shaded area represents skipped exons. Here, we see low coverage on the skipped exon
represent the fusions and the grey areas represent the breakpoint regions. The breakpoi
which support the detected gene fusion.
3. Results

Several gene fusions were found that occur in multiple tumori-
genic cell lines but not in MCF10A. For instance, the gene fusion
EEF1A2-PKN1 has breakpoints that are identically found in the cell
lines BT-474 and T47D, and that deviate at most 19 bps in the other
cell lines. Another example is the gene fusion SREBF1-NUP210 that
occurs in four tumorigenic cell lines. Here, the breakpoints in MCF-
7 and BT-20 are identical in the 50 transcript and are three bps
apart in the 30 transcript. Thus, both fusions candidates produce
the same protein, except that one amino acid is deleted in the
BT-20 cell line. In the cell line T47D the gene fusion candidate
RERG-CBFB was found. RERG is a member of the RAS super family
that inhibits cell proliferation, tumor formation and it is estrogen-
regulated.

For the MCF-7 cell line 16 gene fusion candidates across chro-
mosomes, 17 gene fusion candidates within chromosomes and
14 read through candidates were detected (Table 1). For 16 of these
gene fusions additionally spliced reads are found that span over
the fusion breakpoint. As additional information, for each gene in-
volved in the gene fusions the NE value obtained from the CNV
analysis is provided (Table 1). These numbers indicate that many
fused genes have high copy number values (0.29 is the average
copy number value over all MCF-7 genes).

To validate the detected gene fusion candidates they were com-
pared to gene fusions reported recently by Sakarya et al. [7]. In this
work, 21 of the gene fusion candidates found here have been
experimentally validated. Furthermore, Edgren et al. recently pub-
lished a paper [5] in which they validated three MCF-7 gene
fusions and eleven BT-474 gene fusions. All of their validated
MCF-7 gene fusions and nine of the eleven gene fusions they report
for BT-474 are detected.
iew on top shows the coverage and distances of the fused transcripts BCAS4–BCAS3.
s and high coverage on the fashioned exons. In the gene fusion view the dotted lines

nt region is the sequence within a transcript between the outmost 50 and 30 mates,



Table 1
MCF-7 gene fusion candidates within and across chromosomes. Colored fusions have been validated [7]. Given are CNVs of fused genes, read-pairs and spliced-reads spanning
over fusions.

190 J. Supper et al. / Methods 59 (2013) 187–191
To analyze the CNV enriched regions, two such regions within
the genome of the MCF-7 cell line data were extracted, one on
chromosome 17 and one on chromosome 20. These regions have
a strong overlap with the enriched regions of the BT-474 cell line.
For the selected regions the list of contained genes was extracted.
To understand the biological implications of enriching or deleting
chromosomal regions, all genes were uploaded into the Genomatix
Pathway System (GePS) to perform gene set enrichment analyses
and to view the genes in light of regulatory networks. The most sig-
nificant disease enrichment for these genes was the breast neo-
plasm’s network (p-value: 2.57E-07) and the most significant
tissue was breast (p-value: 3.14E-05).

Genes in regions with high copy numbers could be affected in
many ways. For instance, genes with high copy numbers could ex-
hibit higher expression. Furthermore, genes that exist in many cop-
ies might be more likely to fuse with other genes. The gene fusion
candidates have an average CNV of 1.18, where all genes in MCF-7
have an average CNV of 0.34. Although the CNVs of the gene fusion
candidates are by no means an indication of a fusion event, it was
observed that a high number of fused genes have high CNVs. Ow-
ing to this fact many gene fusions can be observed within the
breast neoplasm’s network. There, 18.75% (6 of 32) of the con-
tained genes are gene fusion candidates. Overall only 0.20% (65
of 32099) of the genes are gene fusion candidates.
4. Conclusion

Many cancer therapies are motivated by the concept that cer-
tain genotypes can predict a therapeutic response and provide a
prognosis. For instance, the expression of the ESR1 gene is a known
biomarker for the endocrine therapy. Microarrays have allowed
screening for such expression based biomarkers on a genome wide
scale.

The developments in sequencing and analyzing RNA-seq data
have extended the capability of genome wide screens to other tar-
gets like gene fusions, SNPs, indels and novel isoforms. Here we
concentrated on gene fusions and presented a pipeline for robust
gene fusion detection. Searching for genetic variants that have
been caused by mutations and chromosomal rearrangement can
potentially lead to very specific biomarkers, because these variants
often only occur in the tumor cells and not in any normal tissue
type.
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To this end, the presented pipeline enables medical researchers
to utilize a robust and comprehensive platform for detecting, visu-
alizing and interpreting gene fusions.
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