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Normal and tumor cells shed vesicles to the environment.

Within the large family of extracellular vesicles, exosomes and

microvesicles have attracted much attention in the recent

years. Their interest ranges from mediators of cancer

progression, inflammation, immune regulation and metastatic

niche regulation, to non-invasive biomarkers of disease. In this

respect, the procedures to purify and analyze extracellular

vesicles have quickly evolved and represent a source of

variability for data integration in the field. In this review, we

provide an updated view of the potential of exosomes and

microvesicles as biomarkers and the available technologies for

their isolation.
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Introduction
Extracellular vesicles (EVs) encompass membrane vesi-

cles that are released by most cells into the surrounding

microenvironment, and mediate inter-cellular communi-

cation at both paracrine and systemic level [1,2,3��,4–10,

11�]. EVs are a complex group of vesicles. Indeed, exten-

sive efforts from the scientific community have been
www.sciencedirect.com 
done to provide names and classification criteria to the

different subtypes of EVs. EV preparations are constitut-

ed by exosomes, microvesicles (including ectosomes and

microparticles) and apoptotic bodies. These vesicles orig-

inate from distinct sub-cellular compartments and exist

in different proportions depending on the physiological

state and cell type of origin. Although no consensus on

marker classification has been established to differentiate

EVs [12,13], exosomes are defined as endosome-originated

membrane vesicles with a diameter of 40–150 nm [14],

microvesicles refer to plasma membrane shedding vesicles

of 0.1–1 mm (ectosomes within this group range from 0.1 to

0.5 mm) [15,16] and apoptotic bodies are originated from

cells undergoing apoptosis and generally present bigger

size [16]. The differential origin of EVs determines their

specific cargos, including proteins and nucleic acids

[16,17]. The cargo will have both a passive and active

impact on the functionality of EVs, and will constitute a

molecular fingerprint representative of the cell of origin.

To date, the majority of biological functions ascribed to

EVs have been studied upon isolation from cell cultures or

from biological fluids (blood, urine and saliva) [17–20].

Given the significant presence of EVs in most, if not all,

bodily fluids, they have been postulated as new potential

biomarkers for a wide range of diseases, including cancer

[21–23,24��,25�,26]. Cancer-derived vesicles isolated from

liquid biopsies have the potential to be used as a novel

clinical tool for refining cancer diagnosis, for therapeutic

stratification as well as for monitoring therapy response

and outcome prediction (metastasis). However, both the

variety and technical complexity of methods used for

vesicle isolation make the use of EVs in clinical practice

a challenge.

In this review, we provide a perspective on the activities

of EVs and discuss the improvement in isolation techni-

ques as well as their potential use as cancer biomarkers.

EVs as non-invasive source for biomarker
discovery
Cancer-derived EVs have inherited potential to be used as

biomarkers because of their ubiquitous presence in bio-

fluids [17,27–29]. The characterization of cancer-derived

EVs, and in particular their molecular cargo, has emerged

as source of circulating information to detect cancer and

predict tumor progression and metastasis. Indeed, cancer-

derived EVs have been reported as clinical markers
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aiding the diagnosis of many cancer malignances. In

ovarian and pancreatic cancer, the exosome pool found

in circulation is increased [24��,30], whereas in prostate

cancer a decrease in urine EVs has been observed when

compared to benign hyperplasia specimens [25�]. In vitro
and in vivo pre-clinical studies have incremented our

understanding on how the tumor specific cargo of can-

cer-derived exosomes can provide information about the

pathophysiological status of cancer patients, by represent-

ing a bioprint of the primary tumor [24��,25�,26] as well as

a detection and monitorization tool [7,31��].

EVs are composed of a lipid bilayer and contain a cargo that

includes all known molecular constituents of a cell: pro-

teins, lipids, microRNA, mRNA and DNA [8,10,32,33].

Whereas membrane composition of cancer-derived EVs

may offer unique insights, recent studies have highlighted

the importance of the cargo (metabolites, proteins and

nucleic acids) for this purpose. The differential presence of

nucleic acids in cancer-derived exosomes is a relievable

source of biomarkers for several cancers, such as glioblas-

toma, bladder, liver, colorectal, lung and prostate, as well

as brain and melanoma metastasis [26,34–38]. Cancer-

derived exosomes contain double-stranded DNA [32,

39–41] and tumor-specific mutations can be detected

in circulating EVs isolated from cancer patients, both

in isolated DNA [39,40], and RNA (EGFRvIII mutation

in glioblastoma [26]).

mRNA from EVs recapitulates to a certain extent the

transcriptional landscape of the tumor. We have shown

that urinary EVs mRNA cargo can discriminate prostate

cancer patients and differentiate them from patients

with benign disease [25�]. We have observed that specific

transcripts exhibit differential abundance in EVs isolat-

ed from urine. Some of these transcripts have differen-

tial abundance reminiscent of the prostate tumor. As

an example, down-regulation of placental Cadherin

(CDH3) in tumor tissue is recapitulated in mRNA from

urine EVs [42�]. This observation could open a new

avenue on non-invasive characterization of transcrip-

tional alterations with prognostic or therapeutic impli-

cations. Indeed, urine exosome gene expression has

been recently proposed as a novel non-invasive ap-

proach to differentiate patients with higher-grade pros-

tate cancer among men with elevated PSA levels, thus

reducing the number of unnecessary biopsies [43].

In the recent years it has been extensively reported the

presence of specific microRNAs (miRs) in EVs, which

are informative for the diagnosis and monitoring of cancer

progression. miRs are small double-stranded RNAs with

strong regulatory potential [44] and its differential abun-

dance in cancer-derived EVs have been associated with

the presence and aggressiveness of squamous cell carci-

noma, prostate and bladder cancer, among others [22,30,

34–36,45–49,50�,51–55]
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EVs can carry protein in their membrane or in the lumen,

representing the tumor proteomic cargo. Differences in

EV-protein content from cancer patients have been de-

scribed in several tumor types [3��,7,24��,31��,56,57]. The

diagnostic potential of EV-protein content is well-illus-

trated in pancreatic ductal adenocarcinoma (PDAC) and

melanoma. The expression of the surface proteoglycan

glypican-1 (GPC-1) in cancer-derived exosomes is as-

cribed to the cancerous state and can discriminate

patients with PDAC from those with benign pancreatic

disease [24��]. In melanoma, the abundance of macro-

phage migration inhibitory factor (MIF) and its phosphor-

ylated form are increased in cancer-derived exosomes

when compared with healthy donors [7]. More recently,

exosomal tumor-secreted integrins have been postulated

as identifiers of the metastatic organotropism [31��].
Lyden and colleagues have demonstrated that the en-

richment of specific integrin heterodimers in circulating

exosomes could predict metastatic organotropism in

breast cancer and pancreatic patients. In this work, exo-

somal integrins a6b4 and a6b1 were associated with lung

metastasis, while exosomal integrin avb5 was linked to

liver metastasis. This data represents a novel strategy to

predict metastasis in liquid biopsies [31��].

The characterization of EV cargo is still in its infancy. EVs

research has shifted our expectations of liquid biopsy as

a source of biomarkers [58]. With the advent of high-

resolution/high-sensitivity genomics, transcriptomics,

proteomics and metabolomics technologies, we envision

that the next decade will consolidate non-invasive cell-

free biomarkers as the tour de force of cancer diagnosis

(Figure 1).

The refinement in EVs isolation methods
As discussed above, EVs are carriers of tumoral molecular

information. However, a confounding factor in these

studies is the heterogeneity of isolation procedures and

the lack of consensus, which impacts on the reproducibil-

ity, yield or types of EVs that are isolated in each study. In

order to select or develop an EVs isolation procedure for a

specific application, several factors should be considered,

such as sample nature (cell culture vs biological fluids),

sample volume, the desired degree of purity, and the final

use intended for the isolated vesicles.

In 2006, Thery and collaborators published a compendi-

um of guidelines to isolate and characterize EVs from cell

culture supernatants and biological fluids [59]. The pro-

tocols included purification routines that ranged from

differential ultracentrifugation coupled to sucrose gradi-

ents, to immunocapture using antibodies against exoso-

mal membrane proteins [59]. However, due to the

exponential increase of the field in the recent years,

new technical solutions have emerged to overcome the

intrinsic limitations in the study of EVs.
www.sciencedirect.com
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Figure 1
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Schematic representation of extracellular vesicles (EVs) as biomarkers in liquid biopsy. The distinct composition of EVs and its cargo in

normal and cancer cells is indicated by differential coloring. Shedding of EVs to blood and urine is depicted (note that urine accessibility

will be organ-dependent). The potential of cancer-EVs to educate the pre-metastatic niche is represented as the accumulation of vesicles

in target organs.
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Differential ultracentrifugation

Differential ultracentrifugation (coupled or not to density

gradients) is the most extended and standardized proce-

dure. This method is compatible with processing large

sample volumes and allows obtaining preparations

enriched in big EVs (mostly microvesicles) or small EVs

(mostly exosomes) based on the use of 10 000 � g and

100 000 � g centrifugation forces, respectively [16,46]. In

addition, when ultracentrifugation is performed on sucrose

or idioxanol density gradients, further separation of the

different subpopulations of vesicles is achieved. Despite

the fact that differential ultracentrifugation could cause

some ‘damage’ to the EV integrity in terms of vesicles

breakage, fusion or aggregation, so far this method is the

most commonly employed for ‘omics’-based molecular

and functional analyses. However, from a clinical point

of view, ultracentrifugation presents several technical

limitations for its practical implementation. In that sense,

several alternatives have reached the market with distinct

strength and weaknesses:

Polymer-based isolation systems

Most of these products are based on polymers adapted

from virus-based studies [60,61]. Although these methods

are not suitable to produce pure preparations of EVs, from

a diagnostic perspective they are acceptable to analyze

molecules that have been previously associated to extra-

cellular vesicles. Among these, Exoquick (System Bios-

ciences) and Total Exosome Isolation kits (Life

technologies) have cornered the market. However, a

new contender, Urine Exosome RNA Isolation Kit

(NORGEN, Biotek Corp.), offers high-resolution and

sensitivity [62,63]. It is worth noting that NORGEN

kit allows the purification of proteins, as recently shown

by our group [25�]. The introduction of these new meth-

ods have led to the concern of a bias in the type of EVs

that are enriched with each approach, which could in-

crease the inconsistency among different studies [25�,64].

Importantly, the presence of polymers could interfere

with some of the analysis downstream, such as LC/MS-

based techniques [65,66] or functional studies as well as

carry soluble factor contaminants that should be deter-

mined and characterized in every model tested.

Filtration systems

Ultra-filtration and gel-filtration chromatography (based

on sepharose columns for size-exclusion chromatography

(SEC)) have been reported to be efficient, quick and able

to achieve results comparable to standard methods [67–
69]. These techniques are effective in removing contam-

inant proteins, and they can be applied downstream of

other methods. Remarkably, an increasing number of

laboratories are incorporating the SEC procedure in their

studies mainly due to the low level of contaminants

obtained in the EVs preparations. In particular, the

SEC-based procedure has been very successful for the

analysis of plasma EVs [70]. However, this technique can
Current Opinion in Pharmacology 2016, 29:47–53 
only be performed with relatively small volumes. For big

volumes, other filtration-based approaches have been

developed including the hydrostatic dialysis, a technique

that has been proposed to analyze and banking urine

samples [71].

Affinity methods

Affinity methods specifically separate EVs by their sur-

face proteins. Nowadays, there are a variety of commer-

cial immunoprecipitation kits for a range of proteins, such

as Cd81 or Cd63, which allows a more specific isolation of

EVs subpopulations, with limitations in their discrimina-

tive capacity [59,72]. In addition, ELISA-based methods

[73], Exosearch [74] and the Immunochip [75] allow an

specific quantification of subpopulation of EVs for a large

number of samples. Recently, high-resolution flow cyto-

metry has been developed as an interesting alternative to

characterize and quantify different subpopulations of EVs

[76,77], and for sorting a subset of EVs based on specific

surface molecules [78]. It is worth noting the potential

applicability of lectin [79] or heparin-based [33] systems

for detection and isolation of EVs based on surface

protein glycosylation.

Towards the production of EVs for therapeutic purposes

Several studies support the use of EVs for delivery of

molecular cargo and related signaling [80,81,82��]. These

ideas have expanded since the description of key mole-

cules, such as integrins, determining the organ-targeted

distribution of tumor-secreted exosomes [31��]. Produc-

tion of clinical-grade exosomes classically require well-

established methods of microfiltration, ultrafiltration, and

a rapid one-step ultracentrifugation into a discontinuous

gradient consisting of 30% sucrose/deuterium oxide (98%)

[83]. More recently, the use of EVs as a carrier of selected

siRNAs has attracted the interest of researchers and a

detailed protocol based on ultracentrifugation has been

established [84]. As the field of exosome research grows,

therapeutic applications and GMP-grade purification

methods are expected to be refined. Thus, in order to

progress towards clinical trials, several topics should be

considered: EV source, EV characterization and storage

strategies, pharmaceutical quality control requirements

and in vivo analyses of EVs [82��]. One of the main

limitations of this field is that the majority of studies

reporting tissue and location-specific distribution of EVs

are restricted to tumor-derived vesicles. Therefore, further

research on EVs derived from normal tissues and their

characteristics is warranted. Using tissue-derived EVs as

a new field in regenerative medicine could be one of the

main areas that will be developed during the next years.

In summary, most of the existing procedures harvest a

mix of EVs. Due to the intrinsic heterogeneity of these

vesicles, the isolation procedure needs to be carefully

considered, since it could deeply impact on the final

outcome of the study.
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Concluding remarks
Our current knowledge on what EVs do and how they

recruit their cargo is limited. We are still far from clinical

use of these vesicles as biomarkers of disease. However,

EVs, exosomes and microvesicles in particular, present

features that make them ideal candidates for liquid biop-

sy-based biomarkers. On the one hand, they are tissue-

specific, which is one of the essential characteristics of

biomarkers. On the other hand, they carry and protect the

cargo from their tissue of origin, hence representing a

bioprint of both physiological and pathological scenarios.

However, there are also challenges that the field needs to

face. We need to understand and define the heterogene-

ity of EVs and their associated cargo, and develop specific

and reliable methods to work with well-defined prepara-

tions. In addition, the EV scientific community is also in

urgent need of reaching a consensus regarding the isola-

tion procedures and characterization [85], so that the field

can integrate the observations coming from different

research groups. The last challenge is to define to which

extent EVs are a reflection of the molecular landscape of

cancer that can be applied to precision medicine. We

learn as we grow, and we need further knowledge and

technological development in the field of EVs. These

light and shadows predict an exciting bright future for

EVs and their applicability in liquid biopsy.
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